

NAVAL
POSTGRADUATE

SCHOOL

MONTEREY, CALIFORNIA

THESIS

Approved for public release; distribution is unlimited

A FRAMEWORK FOR FAULT TOLERANCE IN
VIRTUALIZED SERVERS

by

Kadir Deniz Elmas

June 2016

Thesis Advisor: Man-Tak Shing
Co-Advisor: Arijit Das

THIS PAGE INTENTIONALLY LEFT BLANK

 i

REPORT DOCUMENTATION PAGE Form Approved OMB
No. 0704–0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time
for reviewing instruction, searching existing data sources, gathering and maintaining the data needed, and completing
and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this
collection of information, including suggestions for reducing this burden, to Washington headquarters Services,
Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-
4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188) Washington, DC 20503.

1. AGENCY USE ONLY
(Leave blank)

2. REPORT DATE
June 2016

3. REPORT TYPE AND DATES COVERED
Master’s thesis

4. TITLE AND SUBTITLE
A FRAMEWORK FOR FAULT TOLERANCE IN VIRTUALIZED
SERVERS

5. FUNDING NUMBERS

6. AUTHOR(S) Kadir Deniz Elmas

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Naval Postgraduate School
Monterey, CA 93943-5000

8. PERFORMING
ORGANIZATION REPORT
NUMBER

9. SPONSORING /MONITORING AGENCY NAME(S) AND
ADDRESS(ES)

N/A

10. SPONSORING /
MONITORING AGENCY
REPORT NUMBER

11. SUPPLEMENTARY NOTES The views expressed in this thesis are those of the author and do not
reflect the official policy or position of the Department of Defense or the U.S. Government. IRB Protocol
number ____N/A____.

12a. DISTRIBUTION / AVAILABILITY STATEMENT
Approved for public release; distribution is unlimited

12b. DISTRIBUTION CODE

13. ABSTRACT (maximum 200 words)

In modern naval platforms, most of the critical operations are done with the help of
automated systems. Specifically, operational decisions and actions are finalized using command
and control systems (C2 systems). A wide variety of sensors, radars, communication devices,
and weapons are connected to C2 systems. Generally speaking, C2 systems receive data from
their respective sensors and radar and process that data. Officers then rely on C2 output to
make sound decisions by using their technical knowledge combined with detailed scientific
information.

A modern approach to ensuring the robustness of these systems is to have multiple systems
(or servers) running at the same time that back up one another. Since that approach is
expensive, this thesis attempts to solve that problem or find an alternative solution with a fault-
tolerant, virtual server-based system framework. Our goal is to overcome shortcomings with a
cost- and space-efficient and user-friendly approach.

14. SUBJECT TERMS
fault tolerance, databases, data guard, switchover, failover

15. NUMBER OF
PAGES

141
16. PRICE CODE

17. SECURITY
CLASSIFICATION OF
REPORT

Unclassified

18. SECURITY
CLASSIFICATION OF THIS
PAGE

Unclassified

19. SECURITY
CLASSIFICATION
OF ABSTRACT

Unclassified

20. LIMITATION
OF ABSTRACT

UU

NSN 7540–01-280-5500 Standard Form 298 (Rev. 2–89)
 Prescribed by ANSI Std. 239–18

 ii

THIS PAGE INTENTIONALLY LEFT BLANK

 iii

Approved for public release; distribution is unlimited

A FRAMEWORK FOR FAULT TOLERANCE IN VIRTUALIZED SERVERS

Kadir Deniz Elmas
Lieutenant Junior Grade, Turkish Navy

B.S., Turkish Naval Academy, 2010

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE

from the

NAVAL POSTGRADUATE SCHOOL
June 2016

Approved by: Man-Tak Shing, Ph.D.
Thesis Advisor

Arijit Das
Co-Advisor

Peter J. Denning, Ph.D.
Chair, Department of Computer Science

 iv

THIS PAGE INTENTIONALLY LEFT BLANK

 v

ABSTRACT

In modern naval platforms, most of the critical operations are done with

the help of automated systems. Specifically, operational decisions and actions

are finalized using command and control systems (C2 systems). A wide variety of

sensors, radars, communication devices, and weapons are connected to C2

systems. Generally speaking, C2 systems receive data from their respective

sensors and radar and process that data. Officers then rely on C2 output to make

sound decisions by using their technical knowledge combined with detailed

scientific information.

A modern approach to ensuring the robustness of these systems is to

have multiple systems (or servers) running at the same time that back up one

another. Since that approach is expensive, this thesis attempts to solve that

problem by finding an alternative solution with a fault-tolerant, virtual server-

based system framework. Our goal is to overcome shortcomings with a cost- and

space-efficient and user-friendly approach.

 vi

THIS PAGE INTENTIONALLY LEFT BLANK

 vii

TABLE OF CONTENTS

I. INTRODUCTION .. 1
A. BACKGROUND .. 1
B. PURPOSE OF THIS THESIS .. 2
C. SCOPE AND LIMITATIONS OF THIS THESIS 2
D. ORGANIZATION OF THIS THESIS .. 3

II. A REVIEW OF FAULT TOLERANCE ... 5
A. AN OVERVIEW OF FAULT CONCEPT .. 5
B. AN OVERVIEW OF THE FAULT TOLERANCE CONCEPT 8

1. Definitions ... 8
2. Redundancy Concept ... 9
3. Some Technologies that Ensure Fault Tolerance 10

a. Hot Swapping ... 10
b. RAID .. 11
c. Apache Hadoop .. 14

C. OBJECTIVES OF FAULT TOLERANCE 16
1. Dependability .. 17
2. Availability ... 17
3. Reliability ... 19
4. Safety ... 21
5. Maintainability ... 21

D. FAULT TOLERANCE STAGES .. 22
1. Error Detection .. 23
2. Damage Confinement ... 26
3. Error Recovery .. 26
4. Fault Treatment and Continued System Service 27

III. FAULT TOLERANCE IN ORACLE DATABASES 31
A. WHY ORACLE DATA GUARD ... 31
B. ORACLE DATABASE 12C ... 33

1. An Overview .. 33
2. Database .. 33

a. Database vs. Instance .. 34
b. Data Files and Tablespaces 36
c. Control Files ... 36
d. Redo Log Files ... 37

C. ORACLE DATA GUARD .. 38

 viii

1. An Overview .. 38
2. Oracle Data Guard Configurations 38
3. Advantages of Oracle Data Guard 40
4. How Data Guard Synchronizes Standby Databases 41

a. Transport Services... 41
b. Redo Apply Services ... 43
c. Continuous Oracle Verification 43

5. Managing the Data Guard Configuration 43
a. Switchover and Failover .. 45
b. Fast-Start Failover.. 46
c. Automating Client Failover 46

6. Tying Data Guard to Fault Tolerance 46
D. ORACLE VM VIRTUALBOX ... 47

1. An Overview .. 47
2. Capabilities and Technical Aspects 47

IV. DESIGNING AND IMPLEMENTING A FAULT TOLERANT
DATABASE SYSTEM ... 51
A. DESIGN AND RATIONALE .. 51
B. IMPLEMENTATION .. 54

1. Implementation Steps .. 55
C. TESTING THE PERFORMANCE .. 57

1. Testing Configuration .. 57
2. Tests Performed ... 57

a. Connectivity ... 58
b. User Creation and Granting Roles........................ 58
c. Reading from Databases 59
d. Writing to Databases ... 60
e. Multiple Clients Trying to Access the System 64
f. Writing to Databases as Multiple Clients Are

Trying to Access the System with Multiple
Switchovers and Failovers 68

D. REVIEWING TEST RESULTS .. 80

V. CONCLUSIONS AND FUTURE WORK .. 83
A. SUMMARY .. 83
B. FUTURE WORK.. 84

APPENDIX ... 85

 ix

A. INSTALLING ORACLE DATABASE 12C ON FEDORA
OPERATING SYSTEM ... 85

B. SETTING UP AND MANAGING ORACLE DATA GUARD
USING DATA GUARD COMMAND LINE INTERFACE 89
1. Preparing the Primary Database 90
2. Creating the Physical Standby Database 93
3. Configuring Data Guard Broker 94
4. Changing Transport Mode Using Broker Properties 99
5. Changing Protection Mode to Maximum Availability .. 102
6. Performing Switchover from the Primary Database

to the Standby Database .. 103
7. Enabling Flashback Database 104
8. Performing Manual Failover from the Primary

Database to the Standby Database 106
9. Enabling and Using Fast-Start Failover 110

LIST OF REFERENCES ... 117

INITIAL DISTRIBUTION LIST .. 121

 x

THIS PAGE INTENTIONALLY LEFT BLANK

 xi

LIST OF FIGURES

Figure 1. RAID Levels 0 through 6 ... 12

Figure 2. HDFS Architecture ... 15

Figure 3. Availability Chart for Systems .. 18

Figure 4. Availability Classes .. 19

Figure 5. Bathtub Curve for Hazard Function ... 20

Figure 6. The Spotlight Tool’s Representation of Oracle Database 12c 34

Figure 7. An Instance and a Database in the Same Figure 35

Figure 8. Data files, Redo Log files, and Control Files 37

Figure 9. Typical Oracle Data Guard Configuration 40

Figure 10. A Picture of Oracle Enterprise Manager Cloud Control
Console ... 44

Figure 11. Data Guard Management Page ... 45

Figure 12. The Design of the System ... 51

Figure 13. The Flow Chart of the System Implementation 54

Figure 14. The Configuration of the System for Testing 57

Figure 15. The Result of the Reading from Databases Test 60

Figure 16. Inserting 2000 Rows When Both Databases Are Up 62

Figure 17. Inserting 2000 Rows When the Standby Database Is Down 62

Figure 18. Inserting 2000 More Rows When the Standby Database Is
Down ... 63

Figure 19. Two Databases Are Synchronized .. 63

Figure 20. The Output Before Running Step 6 ... 65

Figure 21. Inserting 4000 Rows from Two Different Terminals 65

Figure 22. Two Databases Are Synchronized .. 66

Figure 23. The Output Before Running Step 8 ... 66

Figure 24. Inserting 4000 Rows from Two Different Terminals When the
Standby Database Is Down ... 67

Figure 25. Two Databases Are Synchronized .. 67

Figure 26. The Number of Entries in the Test Table Before Running the
Four Switchovers in a Single Thread Test 71

Figure 27. Switchover #1 (Single Thread Scenario) 72

 xii

Figure 28. Switchover #2 (Single Thread Scenario) 72

Figure 29. Switchover #3 (Single Thread Scenario) 73

Figure 30. Switchover #4 (Single Thread Scenario) 73

Figure 31. The End of Four Switchovers in a Single Thread Test 74

Figure 32. The End of Four Switchovers in a Single Thread Test (No
Printout Statements) .. 74

Figure 33. The Number of Entries in the Test Table Before Running the
Four Switchovers in Multiple Threads Test 75

Figure 34. Switchover #1 (Multiple Threads Scenario) 75

Figure 35. Switchover #2 (Multiple Threads Scenario) 76

Figure 36. Switchover #3 (Multiple Threads Scenario) 76

Figure 37. Switchover #4 (Multiple Threads Scenario) 77

Figure 38. The End of Four Switchovers in Multiple Threads Test 77

Figure 39. The End of Four Switchovers in Multiple Threads Test (No
Printout Statements) .. 78

Figure 40. The Number of Entries in the Test Table Before Running a
Failover in Multiple Threads Test .. 78

Figure 41. The End of a Failover in Multiple Threads Test 79

Figure 42. The End of a Failover in Multiple Threads Test (No Printout
Statements) ... 79

Figure 43. Enabling Archiving and Force Logging .. 90

Figure 44. Adding 50MB Standby Redo Log Files .. 91

Figure 45. Tnsnames.ora File ... 91

Figure 46. Listener.ora File ... 92

Figure 47. Creating Required Directories for the Standby Database 93

Figure 48. RMAN Script that Duplicates the Primary to the Standby 93

Figure 49. Showing the Primary Database Broker Parameters 94

Figure 50. Showing the Standby Database Broker Parameters 94

Figure 51. Creating the Broker Configurations-I ... 95

Figure 52. Creating the Broker Configurations-II .. 95

Figure 53. Creating the Broker Configurations-III ... 96

Figure 54. Showing the Primary Database Properties-I 96

Figure 55. Showing the Primary Database Properties-II 97

 xiii

Figure 56. Showing the Standby Database Properties-I 97

Figure 57. Showing the Standby Database Properties-II 98

Figure 58. The Configuration of Data Guard, with MaxPerformance 98

Figure 59. The Configuration of Data Guard, with MaxAvailability 99

Figure 60. Showing the Initial Transport Method .. 99

Figure 61. Modifying the Transport Mode to Synchronous 100

Figure 62. Verifying the Transport Method ... 100

Figure 63. Creating a Redo Gap Between Primary and Standby 101

Figure 64. Restarting the Standby Database .. 101

Figure 65. Verifying Primary and the Standby Databases Automatic
Synchronization ... 102

Figure 66. Showing the Protection Mode Configuration-I 102

Figure 67. Showing the Protection Mode Configuration-II 103

Figure 68. Switchover from the Primary Database to the Standby
Database ... 103

Figure 69. Showing Parameters for Flashback Database 104

Figure 70. Enabling Flashback Database on Both Databases-I 105

Figure 71. Enabling Flashback Database on Both Databases-II 105

Figure 72. Enabling Flashback Database on Both Databases-III 106

Figure 73. Shutting Down the Primary and Showing Configurations 107

Figure 74. Successful Manual Failover ... 107

Figure 75. Verifying that the Standby Database Became the Primary 108

Figure 76. Starting Up the Standby Database (Previously the Primary) 108

Figure 77. The Broker Initiates Reinstatement of Database that Shut
Down Unexpectedly ... 109

Figure 78. Success after Reinstating the Database that Shut Down
Unexpectedly ... 109

Figure 79. Success in Configuration after Switchover to the Database
that Shut Down Unexpectedly ... 110

Figure 80. Changing the Fast-Start Failover Threshold 111

Figure 81. Enabling Fast-Start Failover .. 111

Figure 82. Starting the Observer .. 112

Figure 83. Verifying the Observer Is Started... 112

 xiv

Figure 84. Shutting Down the Primary Database for Fast-Start Failover 113

Figure 85. Examining the Actions in the Observer during the Fast-Start
Failover .. 113

Figure 86. The Configuration after Fast-Start Failover 114

Figure 87. Restarting the Previous Primary Database 114

Figure 88. Examining the Actions in the Observer after Restarting the
Previous Primary Database ... 115

Figure 89. Success after Fast-Start Failovers ... 115

 xv

LIST OF ACRONYMS AND ABBREVIATIONS

C2 command and control

DBA database administrator

DGMGRL Data Guard command line interface

HDFS Hadoop Distributed File System

RAID Redundant Array of Inexpensive Disks

URL Uniform Resource Identifier

 xvi

THIS PAGE INTENTIONALLY LEFT BLANK

 xvii

ACKNOWLEDGMENTS

I would like to thank to Man-Tak Shing for his support and guidance, Arijit

Das and Greg Belli for their help on databases, my father, Bahri Elmas, my

mother, Yildiz Elmas, and my brother, Emre Elmas, for their support during my

time in Monterey.

 xviii

THIS PAGE INTENTIONALLY LEFT BLANK

 1

I. INTRODUCTION

This chapter is an introduction to the thesis. The background in the

research area, the purpose of the thesis, its scope and limitations, thesis

question, and the organization of the thesis are presented in this chapter.

A. BACKGROUND

Navy platforms operate under all weather and sea conditions. Therefore, it

is imperative that the systems running on such platforms be robust. In the real

world, however, this is hard to achieve since there are many radars and sensors

connected to the majority of systems. Moreover, since many users operate a

single system simultaneously and in shifts, this burden exacerbates the potential

for error. Yet even under these circumstances, active Navy platforms’ systems

have to be resilient and reliable—up almost all the time. That means the systems

have to be fault-tolerant against users, errors from sensors/radars, system errors,

and physical or hardware errors.

As technology has developed during the past four decades, most of the

equipment used on Navy platforms has become more dependent on computers.

In today’s Navy platforms, most of the critical operations are run with the help of

automated systems. The designed automated systems have to be robust, fault

tolerant, and have high survivability. Otherwise, rather than being freed up to

focus on operations, personnel will be beleaguered with the problems that occur

in the automated system.

A modern approach to ensuring the robustness of these systems is to

have multiple systems (or servers) running at the same time that back up one

another. This thesis attempts to solve these problems or find an alternative

solution with a fault-tolerant, virtual server-based system framework. Our goal is

to overcome shortcomings with a cost and space-efficient, user-friendly

approach.

 2

B. PURPOSE OF THIS THESIS

The main purpose of this thesis is to find an alternative way to ensure the

fault tolerance of data storage and retrieval in command and control systems (C2

systems) of Navy platforms, especially when the data is in transit. By doing this,

when a problem occurs in system data storage and distribution units, the C2

system will find an alternative way to stabilize itself and recover from an

unintended state to a normal one. The concept of fault tolerance has to be

implemented in the C2 system according to a plan to ensure the system will

behave as expected in wartime under any circumstances. Thus, an

implementation plan must include these essential considerations:

 The C2 system itself must have no single point of failure. This also
means that there must always be a way for the system to
compensate for failures.

 Although it is impossible to have a zero-failure environment, the C2
system must maintain stability and have a flawless runtime by
being able to rapidly switch to alternative data resources at the time
of failure.

 The required time to switch between main data resource and
alternative should be minimal.

 Switching between data resources at the time of failure must not
affect the rest of the system, especially ongoing processes of high
importance.

 The C2 system needs to recover itself instantly. Moreover, it also
needs to check the status of the main data resource frequently to
switch back to that resource as soon as the problem is resolved.

This thesis tries to answer the following question:

 Is there a better way to ensure the fault tolerance in command and
control systems of Navy platform databases in terms of economics
and performance?

C. SCOPE AND LIMITATIONS OF THIS THESIS

The scope of this thesis is to find an alternative way to have a fault

tolerance in databases in C2 systems of Navy platforms using Oracle Database

12c and its features and to test it respectively according to fault tolerance

 3

concepts. This thesis mainly focuses on Oracle Database 12c and Oracle Data

Guard, which run on the Fedora operating system.

In this thesis, we used Oracle VirtualBox as a hypervisor for the virtual

environment that we worked on. We also used Fedora operating system to install

the Oracle Database 12c. We created two databases in the system. Those two

databases use the localhost as host and different service names to communicate

via Data Guard. They also have four standby redo log files, which have the size

of 50MB each. The listener and Data Guard command-line interfaces (DGMGRL)

are used for the communication of the system. The observer is installed on the

same operating system.

In addition to those system characteristics previously mentioned, we also

connected to the databases as a normal user (in other words, as a client) using

Java codes on the same operating system. In this framework, instead of making

the client failover scenarios transparent to clients using one single connection

URL (Uniform Resource Identifier), we explicitly used two URL strings in order to

connect to the databases so that we can measure the time to wait for changing

the connection URL in between failover or switchover testing scenarios by

extensive tests that are independently calculated in the system.

D. ORGANIZATION OF THIS THESIS

Chapter I provides a general overview on the thesis. In Chapter II, we

cover the fault tolerance concept by introducing definitions of fault, system

failure, and error as well as many other definitions related to the fault tolerance

concept. After presenting those definitions, we review some technologies that

ensure fault tolerance. After that, we introduce Error Detection and Error

Correction subjects as the stages of fault tolerance. We conclude this chapter

with five major objectives of fault tolerance: Reliability, Availability, Safety,

Maintainability, and Dependability.

 4

In Chapter III, we specifically focus on the fault tolerance in Oracle

Databases. We explain the Data Guard feature in this chapter. We also present

how Data Guard synchronizes databases in this part of the thesis.

In Chapter IV, we introduce the design and implementation of the system

for fault tolerance in databases. After introducing the design and implementation,

we present various testing cases and findings.

In Chapter V, we conclude the study and recommend some ideas for

future studies.

 5

II. A REVIEW OF FAULT TOLERANCE

In this chapter, definitions of fault, system failure, and error as well as

many other definitions related to the fault tolerance concept are discussed. After

presenting those definitions, we review some technologies that ensure fault

tolerance. Hot Swapping, RAID (Redundant Array of Inexpensive Disks), and

Apache Hadoop technologies are presented under the technologies section.

After that, Error Detection and Error Correction subjects are introduced as stages

of fault tolerance. This chapter concludes with five major objectives of fault

tolerance: Reliability, Availability, Safety, Maintainability, and Dependability.

A. AN OVERVIEW OF FAULT CONCEPT

In this part of the thesis, introducing the breakages of dependable

computing in the first place is a good starting point. There are a few impairments

to dependable computing such as faults, errors, and failures in the system [1].

A user can only perceive the part of the system that is being interacted

with as the system behavior. A normal system behavior would be getting the

expected service back from the system. For example, when clicking on the

“Save” button on a Microsoft Word document, if the system is saving the

document that the user wanted to save, then that is the normal system behavior.

Another example, when the user wants to make a simple calculation using a

calculator, the normal system behavior should be getting the correct outcome

after the user presses the “=“ button.

On the other hand, a system can respond with an unusual or unintended

behavior. This can be explained further using the examples just given, but ending

with different results. When clicking on the “Save” button on a Microsoft Word

document, the system does not save the document that the user wanted saved,

or the calculator produces the wrong outcome after the user presses the “=“

button.

 6

The service that is delivered by a system can also be interchangeably

called the system behavior. A system failure happens when the delivered service

is not the same as the specified service, as opposed to the normal system

behavior. A system failure is a specific type of unusual behavior, because it is not

intended. An error is a part of the system itself, and an error may also be the

underlying cause of the failure. An error, which is introduced into the system by a

programmer, may lead to a fault, and that fault can cause a system failure [1], [2].

Here are some related definitions taken from the IEEE Standard Glossary

of Software Engineering Terminology:

 Error: The difference between a computed, observed, or measured
value or condition and the true, specified, or theoretically correct
value or condition. For example, a difference of 30 meters between
a computed result and the correct result.

 Fault: An incorrect step, process, or data definition. For example,
an incorrect instruction in a computer program.

 Failure: An incorrect result. For example, a computed result of 12
when the correct result is 10.[2]

To put the definitions in an order for a better understanding, here is the

typical system behavior when there is a system failure: an error creates a hidden

fault, which becomes effective after its activation, and the system failure happens

when the fault, which was hidden beforehand, affects the normal system

behavior or the service. In other words, a fault is the result or the appearance of

an error in the system, and a failure is the result or the appearance of a fault in

the system [1], [2].

A fault, in a general sense, is a kind of physical defect that happens in the

software or hardware parts of the system [3]. Since a system is too big and

complex, it is impossible to test every single sub-system and part—especially

when no failure is observed. For this reason, it is quite hard to foresee a fault.

When there is a fault in the system, it is not certain that there is a failure in the

system. A failure only happens if a hidden error is activated and causes a fault;

then a hidden fault is activated and causes a failure to happen. On the other

 7

hand, a failure in the system assures that there is a fault. Therefore, an error is

present in the system.

Here are some more examples on the notion of error and fault concept:

 A programmer’s mistake, which is in the code, is a kind of error.
The consequence of that error is a hidden fault that is in the
program. That particular fault stays hidden or silent until it is
activated. At that point, that fault creates an erroneous data, thus, a
failure happens [1].

 A hardware defect in hard disk is a kind of fault. That particular fault
stays hidden or silent until it is activated. At that point, that fault
creates an erroneous data, thus, a failure happens.

 Like the previous example, there are some other similar types of
fault such as an electromagnetic unsteadiness because of change
of energy and an inappropriate man-machine interaction [1].

 A mistake, typographical error, or misleading instructions in a
maintenance or operating manual is a kind of error. Actually, this
example is a very good one, since it shows us that failures are not
always about software or at hardware level. Failures can be related
to operators, weather conditions, and even documentation, in
addition to software and hardware infrastructure. It is simply
because we cannot separate any system from the outer
environment, or from people who are interacting with them. In this
maintenance or operating manual example, the error will stay as
hidden in the maintenance or operating manual until the directive,
which has an error in it, is applied to the system [1], [2].

There are various reasons behind faults. Examples include:

 Physical faults: short-circuits in the hardware level, temperature,
vibration, heat, humidity, etc[1]..

 Human-made faults: generally human-made faults happen from
some other reason, such as the following:

 Design faults: this type of fault is generally made during system
design or system modifications, or during the creation of
maintenance or operating manuals.

 Interaction faults: deliberate or non-deliberate faults of operators.
This type of error may occur because of the lack of personnel
training [1].

 8

B. AN OVERVIEW OF THE FAULT TOLERANCE CONCEPT

In this section, the concept of fault tolerance is presented. It is a highly

important subject in the modern computing world, because there are numerous

activities, including those that shape countries’ economies and—even more

important—those that protect human lives, that should be running with minimal,

or if possible, no faults.

1. Definitions

A system is fault tolerant if it can tolerate or minimize the effects of the

existing faults in the system by the help of redundancy [4]. Actually, it is easier

said than done. The system cannot be made fault tolerant against every single

fault as a whole. The utmost aim of fault tolerance is avoiding the total system

failure when some sub-parts or sub-systems fail [4].

Another definition of fault tolerance can be given as a system is treated as

fault tolerant provided that the system behavior or, in other words, expected

service is consistent with the normal system behavior, even when there are some

failures in the system [4].

Having a fault tolerance in the system may have some minor adverse

effects such as decline in the overall performance or limitations of total disk

capacity. However, these effects are not so important in comparison to the failure

of the total system.

Redundancy is the key behind the fault tolerance concept [4]. From

another perspective, fault tolerance cannot be offered without any means of

redundancy [4]. Redundancy is defined as a kind of abundance of resources,

where those resources would be not used or not needed as the system is

running without faults [4]. More about the redundancy concept is presented in the

next section.

There are a few more definitions related to the fault tolerance discussion

worth noting:

 9

 Fault avoidance is preventing the possibility of fault occurrence.

 Error removal is minimizing the existence of hidden errors in the
system by using verification.

 Error forecasting is estimating the presence, occurrence and
consequences of errors in the system [1].

Fault tolerance and fault avoidance are mainly part of dependability

acquisition, which means giving the best effort to deliver the specified service. On

the other hand, error removal and error forecasting are mainly part of

dependability validation, which means getting enough confidence off the system

on delivering the specified service [1].

2. Redundancy Concept

Under normal operation, a redundant part of a system is abundant and

does not participate with the parts that are actively involved in the system run [4],

[5].

According to Koren, “Redundancy is the property of having more of a

resource than is minimally necessary to do the job at hand. As failures happen,

redundancy is exploited to mask or otherwise work around these failures, thus

maintaining the desired level of functionality.” [6]

To qualify as a fault tolerant system, the system has to have redundancy.

Redundant parts are to be used in place of a failed part when there is a failure in

the system. Redundancy may bring some side effects into the system. Decrease

in performance, the expansion in the total system size and weight, and a hike in

the system cost can be counted in those adverse effects [5].

There are four types of redundancy in a general aspect. These

redundancies are hardware redundancy, software redundancy, time redundancy,

and information redundancy [5], [6].

Hardware redundancy can be established by having extra or, in other

words, abundant hardware in the system for mainly two purposes. One is to

detect the effects of a failed component in the system, as in run-time testing

 10

uses. The other is overriding the effects of a failed part. For example, we can

have two or more power supplies, each performing the same function by giving

adequate redundancy to ensure our system will run as intended, instead of

having a single power supply in our system. We can detect the error in a running

power supply if we have two power supplies. If we have three power supplies, we

can override the effects of a failed power supply, and so on. We can give the

power supply instance just presented as a static hardware redundancy example.

The main goal of static hardware redundancy is to mask the failure immediately

by allowing the system to run as if there is no failure at all. There is another type

of hardware redundancy, which is called dynamic redundancy, which activates

the spare components in the system as a failure occurs. In this dynamic

hardware redundancy, spare components in the system are not used during

normal operation, and they will be waiting passively until there is a failure and the

need for them occurs. Both static and dynamic redundancy approaches for

fulfilling the users and systems needs are called hybrid hardware redundancy [6].

3. Some Technologies that Ensure Fault Tolerance

Some technologies have been developed over the years to ensure the

fault tolerance in a given system. In this section, Hot Swapping, RAID, and

Apache Hadoop system is presented here.

a. Hot Swapping

Hot swapping is a general term to describe the functions that change

some parts without shutting down the whole system. Hot swapping function also

keeps the system running with no interruption or only a minor interruption at the

worst case. There are two main types of hot swapping, known as hardware hot

swapping and software hot swapping [7], [8].

The idea behind hardware hot swapping is to have abundant disks or

hardware components in order to keep the system running normally, even if there

is a failure. Hot swapping is strictly a hardware function and requires no

commands from the terminal or manual operation. If this were the case of

 11

applying a manual procedure or putting the system in sleep mode or in any state

other than the normal one, then this would not be a fault tolerant system at all.

According to [8], software hot swapping is the technology term that

explains the “replacement of a software program or a part of a program while the

whole software system remains in operation” [8]. Hot swapping indicates the

ability to replace the parts that are not functioning without the user’s notice [7].

According to Feng [8], “Software upgrading, needed for bug-fixes,

updates, or functionality upgrades, is generally not easy. It is particularly difficult

in computer communication networks where software can be widely distributed

across heterogeneous domains. The problem is complicated even further by the

requirement in some applications for almost 100% availability. As a result, in

many cases it is extremely important not to have to take a system off line for

software upgrading and/or recompilation.”

There are some issues in software hot swapping, such as the Referential

Transparency Problem, the State Transfer Problem, and the Mutual Referential

Problem [8], [9].

b. RAID

RAID is the abbreviation for “Redundant Array of Inexpensive Disks.” It is

a technology for storing data that associates multiple physical hard drives into a

logically, or seemingly, single unit. This technology is designed primarily to

provide fault tolerance, large storage capacity, and faster disk access. The main

focus areas in this technology are performance and reliability [10].

There were five standard RAID levels originally; however, many more

have evolved as time passed [10]. The standard RAID levels are named as RAID

and a number starting from 0. For example, standard RAID levels are named as

RAID 0, RAID 1, and so on. In addition to standard RAID levels, it is possible to

create hybrid levels. The most common examples of hybrid RAID levels are just

one level deep. In other words, generally two standard levels are combined to

 12

create hybrid RAID levels. Combined RAID levels are named as RAID and the

combination of numbers that forms the specific RAID combination. For example,

combined RAID levels are named as RAID 0+1, or RAID 01, if that combined

RAID level is the combination of RAID 0 and RAID 1 [10].

Standard RAID levels 0 through 6 are illustrated in Figure 1.

Figure 1. RAID Levels 0 through 6

Source: P. Chen P et al., “RAID: High-performance, reliable secondary storage,”
ACM Computing Surveys (CSUR) vol. 26, no. 2, p. 153, 1994.

 13

RAID 0 is disk striping. In RAID 0, there are multiple physical hard disks

that form a big single disk. For example, if we have four 1 GB hard disks in our

system and we use RAID 0, then we have 4 GB of total capacity. In other words,

we sum the total capacities of each disk in order to find the capacity of our RAID

0 volume. RAID 0 does not offer any type of redundancy for disk failures. If a disk

failure happens, then all the data in that disk is practically lost.

Disk mirroring technology is known as RAID 1. In RAID 1, in short,

multiple physical disks look like one disk. This technology will duplicate the same

data onto a paired disk; yet, they will look like one disk. For a simple example,

assuming that we have four 1 GB hard disks in our system and we use RAID 1,

then we could have two pairs of disks for creating real-time disk copy; therefore,

the whole disk capacity may look like 2 GB instead of 1 GB. We could visualize

the same example as we do have two pairs, each having two 1 GB disks in it,

and each pair looks like one disk. RAID 1 provides fault tolerance by redundancy.

If one disk fails, we can still work because the other disk in the pair (by saying

‘pair’ here, we are trying to refer to the example that we gave earlier) has the

exact copy of the failed disk. We can also change the damaged or broken hard

disk while the system is running. RAID 1 enables the hot swapping technology,

which is presented in the previous subsection. The biggest disadvantage of RAID

1 is that we lose half of our performance and half of our total disk capacity. RAID

1 technology does not hold a backup for users. It only works on hard disk

failures, where it offers fault tolerance by redundancy. For example, when a user

deletes a file from the hard disk, the exact copy is deleted from the disk next to it

(that is, from the other disk holding the exact copy of the previous disk).

RAID 5 is known as “block-level striping with distributed parity” [11]. This

RAID level has a place in between RAID 0 and RAID 1. We can reconstruct the

data after failing, with the help of parity bits and error correction codes. If a disk

fails, we can replace it before any other disks fail and continue our work, and the

user can feel the degraded performance. According to [11], “Upon failure of a

 14

single drive, subsequent reads can be calculated from the distributed parity such

that no data is lost. RAID 5 requires at least three disks.”

c. Apache Hadoop

Apache Hadoop is a “framework that allows for the distributed processing

of large data sets across clusters of computers using simple programming

models” [12].

The core of Apache Hadoop has two main parts as the storage part and

the processing part. The storage part is called the Hadoop Distributed File

System. The processing part is called the MapReduce.

Hadoop Distributed File System (HDFS) stores large files that are

generally in the range of gigabytes to terabytes across multiple machines [13].

HDFS is managed by daemon processes, which are as follows:

 NameNode: Master process

 DataNode: Slave process

 Checkpoint NameNode (or Secondary NameNode): Checkpoint
process

 BackupNode: Backup NameNode [13]

HDFS architecture is presented in Figure 2.

 15

Figure 2. HDFS Architecture

Source: D. Borthakur. (2011, Apr. 04). Apache Hadoop filesystem and its usage
in Facebook. [Online]. Available: http://cloud.berkeley.edu/data/hdfs.pdf

NameNode is the master process daemon server in HDFS that

coordinates all the operations related to storage in Hadoop, including the reads

and writes in HDFS. NameNode manages the filesystem namespace.

NameNode holds the metadata about all the file blocks, and in which all nodes of

data blocks are present in the cluster [13].

DataNode holds the actual data in HDFS and is also responsible for

creating, deleting, and replicating data blocks, as assigned by NameNode [13].

Checkpoint NameNode, earlier known as Secondary NameNode, is a

node that has frequent data check points of FsImage and EditLog files merged

and available for NameNode in case of any NameNode failure. Checkpoint

NameNode collects and stores the latest checkpoint [13].

 16

BackupNode is similar to Checkpoint NameNode, but it keeps the updated

copy of FsImage in RAM memory and is always synchronized with NameNode

[13].

MapReduce is a

programming model and an associated implementation for
processing and generating large data sets. Users specify a map
function that processes a key/value pair to generate a set of
intermediate key/value pairs, and a reduce function that merges all
intermediate values associated with the same intermediate key
[14].

MapReduce provides “automatic parallelization and distribution,” “fault

tolerance,” “input and output scheduling,” and “status monitoring” [14].

MapReduce, which is fault tolerant software, is designed to avoid server

problems. According to Dean, “When a machine fails, the master knows what

task that machine was assigned and will direct the other machines to take up the

map task. You can end up losing 100 map tasks, but can have 100 machines

pick up those tasks” [15].

According to Shankland,

The MapReduce reliability was severely tested once during a
maintenance operation on one cluster with 1,800 servers. Workers
unplugged groups of 80 machines at a time, during which the other
1,720 machines would pick up the slack. “It ran a little slowly, but it
all completed,” Dean said. … In a 2004 presentation, Dean said,
“One system withstood a failure of 1,600 servers in a 1,800-unit
cluster” [15].

C. OBJECTIVES OF FAULT TOLERANCE

Fault tolerance is an attribute built in a system that ultimately seeks to

meet design requirements. The most significant requirements are dependability,

availability, reliability, safety, and maintainability [3], [5].

 17

1. Dependability

The definition of dependability according to Avizienis et al. is “the ability to

deliver service that can justifiably be trusted. This definition stresses the need for

justification of trust. The alternate definition that provides the criterion for deciding

if the service is dependable is the dependability of a system is the ability to avoid

service failures that are more frequent and more severe than is acceptable” [16].

Avizienis et al. also state, “It is usual to say that the dependability of a

system should suffice for the dependence being placed on that system. The

dependence of system A on system B, thus, represents the extent to which

system A’s dependability is (or would be) affected by that of System B. The

concept of dependence leads to that of trust, which can very conveniently be

defined as accepted dependence” [16].

Dependability is a concept that integrates and covers some other

concepts in fault tolerance, which are summarized by [16] as:

 Availability: the state of being available for desired service

 Reliability: ensuring that the ongoing service is correct

 Safety: ensuring that no catastrophic consequences will result to
users and the system

 Maintainability: the flexibility of going into small or big changes, yet
still being able to function

2. Availability

The availability of a system can be expressed with a function, expressed

as the probability that “the system is operating correctly and available” to its

users at time t [3]. Availability is an important metric for systems. Most of the big

technology enterprises introduce their products with an availability metric, as well

as the specifications of that product. Figure 3 gives the availability chart for

systems in general.

 18

Figure 3. Availability Chart for Systems

Source: M. Malek. (2004, May). Dependable systems introduction. [Online].
Available: http://www2.informatik.hu-berlin.de/rok/zs/WS0405/data/slides/
zs01_04Intro.pdf

System availability can be given in a chart after calculating the ratio of the

time where the system is available to the total. Figure 4 shows some common

classes with the associated availability percentages and annual downtime of the

system [5]. Systems are named after the total number of 9’s they have in their

availability measurement. For example, if a system has the value of 99.9% for

system availability, then the system can be named the three nines system.

Alternatively, the system can be expressed as an availability class. For instance,

if a system has a value of 99.995% for system availability, then the system can

be categorized as Class 4, since 99.995% is between 99.99% and 99.999% [5].

 19

Figure 4. Availability Classes

Source: E. Kati, “Fault-tolerant approach for deploying server agent-based active
network management (SAAM) server in Windows NT environment to provide
uninterrupted services to routers in case of server failure(s),” M.S. thesis, Dept.
Computer Science, Naval Postgraduate School, Monterey, CA, 2000.

3. Reliability

The reliability of a system is a “function of time, R(t), defined as the

conditional probability that the system performs correctly throughout the interval

of time, [t0,t], given that the system was performing correctly at a time t” [3]. In

other words, it is a measure of the “continuous service accomplishment from a

reference initial instant” [3].

According to Sorin [17], “Unless a system failure is catastrophic (e.g.,

avionics), reliability is a less useful metric than availability.”

The reliability of a system can be expressed with the ‘Bathtub Curve,’

which is given in Figure 5. Generally, there are three phases in a system’s life in

terms of failure rate, which are decreasing failure rate, constant failure rate, and

increasing failure rate. It is quite important to determine the time projections,

 20

where the decreasing failure rate curve ends and the constant failure rate starts,

as well as where the constant failure rate ends and increasing failure rate curve

starts. This has two important advantages for the system. One is the advantage

of determining the time projections correctly, which enables the manufacturer to

decide the length of the guarantee time or the warranty. Most of the guarantee

time lengths are determined according to failure rates of the system. In the user’s

perspective, it is always safe to have a warranty or extended warranty right

before the failure rate increases.

Figure 5. Bathtub Curve for Hazard Function

Source: Bathtub curve. (n.d.). Wikipedia. [Online]. Available:
https://en.wikipedia.org/wiki/Bathtub_curve. Accessed Dec. 24, 2015.

The other advantage is determining the time projections correctly, which

gives the knowledge of when to replace the subparts of a system or completely

 21

remove and replace with the upgraded version of the system before the failure

happens, especially in the military domain, where almost all systems are critical.

Assuming that the system life time is exponentially distributed, the

reliability of that system is e-λt [5]. In the formula, λ is the failure rate of the system

and t is the time interval. The expected failure numbers per the unit of time is

called the failure rate of that system [5].

According to Pradhan, “The exponential relationship between the reliability

and the time is known as the exponential failure law. The exponential failure law

is very important for the analysis of electronic components, and is by far the most

commonly used relationship between reliability and time” [3], [5].

4. Safety

According to Pradhan, “Safety, S(t), is the probability that a system will

either perform its functions correctly or will discontinue its functions in a manner

that does not disrupt the other systems or compromise the safety of any people

associated with the system” [3]. Safety is a representation of the fail-safe

capability in a system. If the system does not function as expected, we expect it

to fail in the safest way [3], [5].

The concept of reliability differs from the concept of safety. Reliability can

be expressed as a probability of any system’s correct overall function

performance. On the other hand, safety tells that the system will either function

correctly or will run without interrupting the whole process. The concept of safety

is expressed with a probability. It is astute to say that if a system is reliable, it is

also safe. On the other hand, we cannot conclude the other way around [5].

5. Maintainability

According to Pradhan [3], “The maintainability is a measure of the ease

with which a system can be repaired once it has failed.” It is the “probability that a

failed system will be restored to an operational state” within a certain and

acceptable period of time [3], [5].

 22

According to Kati, “Maintainability encapsulates not only the failures of the

system, but also the modifications that are necessary for the required level of

system performance” [5]. System functions must be maintained and upgraded

regularly to ensure that the system meets user expectations and needs.

Performing these maintenance activities can be made easier if the system is

highly modular [5]. Kati further states that “If the consequences of a modification

can be localized to well-defined small modules, then the maintenance effort can

be minimized. Fault tolerance can support maintainability in the problem

detection and problem location process. The maintenance of the system can be

done after the detection and the localization of the failure. Fault tolerance can

also support maintainability in the modification process by allowing maintenance

actions without interrupting the service delivered by the system” [5].

D. FAULT TOLERANCE STAGES

The systems that have fault tolerance try to continue providing normal

service despite having failures in some subcomponents. The most important

parts of fault tolerance are error detection, damage confinement, error recovery,

and fault treatment and continued system service [18].

Error detection is the first stage, where a fault and, therefore, an error is

detected in a subcomponent. The detection of an existing error implies that a

failure may occur on that subcomponent, as discussed in the section “An

Overview of the Fault Concept,” earlier. After detecting the error, the system has

to identify and bound the limits of the damage that was the consequence of the

failure. This stage is known as damage confinement. In these first two stages,

the error is detected, and efforts for limiting the estimated boundaries of the

damage caused by the failure are endeavored. These first two stages can be

grouped as detection stages.

Errors and faults have to be detected before starting the further work for

fault tolerance. When the system finishes these first two stages, errors and faults

need to be corrected for enabling the normal service to be delivered to users.

 23

This is the responsibility of the error recovery stage. Error recovery stage will

take the system to an error-free state, by removing errors that occurred

beforehand.

After the error recovery stage, the fault treatment and continued system

service stage comes into action for identifying the faulty component or

components.

1. Error Detection

In the extent of fault tolerance, error detection is the very first step. In the

best case, we expect the error detection mechanism to detect every single error

in the system, which is only ideally true. In reality, however, it is not quite

possible.

There are certain features that an ideally feasible error detection

mechanism should fulfill. First, the error detection should not be affected by the

system design. Therefore, the best approach is seeing the system as a black

box, like a function structure in any programming language [4], [5].

Second, the error detection mechanism should be sound and complete.

This can be achieved by detecting all possible errors, and the declared errors

should indeed be in the system [4], [5]. The detection mechanism should avoid

giving false positives [4], [5].

Third, the check should be independent from the system in terms of being

vulnerable to failures. The detection mechanism should not fail at system

failures; otherwise, the whole error detection phase would be unproductive and

meaningless, which amounts to having a different error detection failure

mechanism than the actual system [4].

These three criteria can rarely be met in systems in real life due to many

difficulties. It is very hard to identify every single error in the system. The

complete test of error detection is very costly and time-consuming [4].

 24

Because of the aforementioned reasons, in most of systems, checks for

acceptability are made instead of checks for ideality. In other words, checks for

acceptability are the approximation of checks for ideality. The main aim in this

perspective is to lower the cost of error detection checks, as well as trying to

keep the error detection performance maximized. In the checks for acceptability

approach, most errors in the system are expected to be caught in a predefined

confidence interval. Here are some general types of error detection checks that

are used frequently:

(1) Replication Checks

Replication checks are one of the most broadly used and effective checks.

These types of checks have advantages in terms of ease of use and

completeness in checks [4]. They can also be applied to a system with a little

knowledge of internal system dynamics. As it may be understood from the name,

these checks depend on replicating some components of the system. Therefore,

replication checks are highly expensive error detection methods [4]. Replication,

which is using identical copies of system parts, works provided that the interior

design of those parts is working as expected. On the other hand, if the interior

design of those parts is not working normally, replication checks will not succeed

either [4].

Replication has purposes other than solely for error detection, especially

in distributed systems [19]. Generally, data or processes, which are replicated in

distributed systems, enable the handling failures in the system easily [4].

(2) Timing Checks

If timing constraints are included in the interior design of system

components, timing checks can be used for checking whether timing constraints

are satisfied or not. Timing checks mainly play a big role both in hardware and

software systems for detecting problems. After setting the timer, the system will

check whether the timer has timed out. Having a timeout in the system indicates

 25

that there is at least one component malfunctioning. In other words, a timing error

is an indirect indication of the existence of an error in the system [4].

(3) Structural and Coding Checks

Two types of checks are used in general, semantic checks and structural

checks. Semantic checks are used for verifying the value is consistent with the

rest of the system. Structural checks, on the other hand, are used for checking

data against data, which is the part of the normal behavior of the system, in the

internal design of system structure [4].

Structural checks are mainly used in hardware components of systems by

means of coding. Extra bits are added to actual data bits for error checking

purposes. When an inconsistency is found in coding bits with the help of extra

bits, the error is detected. These kinds of error detection mechanisms are mainly

used in hardware components of systems. Data structures that use redundancy

for enabling structural checks are known as robust data structures [20]. In robust

data structures, the system, which uses redundancy and structural checks, can

locate the error and also correct the corrupted part by using extra bits [4]. This

approach is used in RAID technology.

(4) Reasonableness Checks

Reasonableness checks decide whether the system status is reasonable.

For example, the range check, which is made to check whether the value is in a

specified range, is a type of reasonableness check. The range check only shows

whether the value is within the range. It does not say anything about the

correctness of the given value [4].

Inserting assertion statements in the code is another kind of

reasonableness check. By definition, an assertion is a logical expression on the

value of different variables in the system, which will evaluate to true if the state of

the system is consistent; otherwise, it will evaluate to false. It is a practical way to

detect errors, especially in software [4].

 26

(5) Diagnostic Checks

The purpose of diagnostic checks is to determine whether the component

of a system is working correctly. In these types of checks, the system performs

diagnostic tests on a specific component. Systems mostly use previous known

correct values to check current values for comparison. Therefore, a mismatch in

comparisons equates to an error. Diagnostic checks, which are also known as

self-checks, mostly appear on startup times of systems [4].

2. Damage Confinement

When an error in the system is detected, it also points out one or more

faults that are present in the system. While it is good to detect a fault or faults in

the system, we need to deal with the problem of time delay as well. The time

delay in this context can be addressed as the time difference between the failure

and the time that we detected the error. One of the many reasons for the time

delay issue can be that we do not monitor the system all the time. Having some

problems in our log files can be the other reason. One way or another, the time

delay issue can lead to other problems in the other parts of system [4].

In this damage confinement phase, the boundaries of corruption have to

be determined before going ahead and correcting actual failures.

3. Error Recovery

After detecting the error in the system and determining the boundaries of

corruption, it is appropriate to start removing the error from the system. The main

goal of this phase is to clean the system of errors. It is very important to apply

error recovery on the system, so the system can lead to a consistent state. Two

techniques for error recovery are backward and forward recovery [4].

(1) Backward Recovery

When we exercise backward recovery, the system is restored to an earlier

state, where there is no error. In order to apply this error recovery technique, the

 27

states of the system have to be saved periodically [4]. It is like taking backups,

such as full, incremental, or differential backups, of the system. We can call

those backup media checkpoints of the system. After isolating errors in the

system, we can roll back to a previous backup, ideally the most current one that

is known to be good. It is worth noting that the system has to be backed up

frequently to allow for successful backward recovery in the long term.

The biggest advantage of this approach is that we do not need to analyze

the possible causes of errors in order to apply the error recovery on the system.

Thus, error recovery will not take too much time. We will only roll our system

back to an earlier backup. It is also possible that we can investigate the reason

for the errors on a different test machine, while our actual system is running

normally. In large enterprises, this error-analyzing job can be given to special

departments.

(2) Forward Recovery

Unlike backward recovery, there is obviously no backup available in the

forward recovery technique. Therefore, this approach attempts to neutralize

errors in the system and make it run normally. We achieve this by correcting

existing errors [4].

It is quite obvious that the cause of an error has to be diagnosed and

learned before moving ahead and starting forward recovery. Consequently, a

very detailed error diagnosis has to be performed for forward recovery.

A special team of people has to work on error diagnosis for forward

recovery.

4. Fault Treatment and Continued System Service

The main focus in the first three phases is detecting errors, determining

the boundaries of corruption, and then removing the error from the system. After

the first three phases, the system should be free from errors. If the error is

temporary, or if it originated from a momentary variation in current, voltage, or

 28

frequency, error detection, damage confinement, and error recovery will be

enough for the system to go back to an error-free state. Moreover, we can be

sure that when we reboot the system, it will run normally if temporary or transient

error is the case [4].

On the other hand, there may be some cases where the existing error is

the result of some permanent condition. If that is the case, even if we remove the

error from the system, after the restart or some amount of time; the same error

will reoccur. Therefore, we need to identify the faulty component and take that

component out of use in order to avoid the same error recurring repeatedly. The

main goal of this phase is to bypass the faulty component of the system without

affecting the normal runtime of the environment [4].

This fault tolerance stage has two main subparts, fault location and

system repair.

(1) Fault Location

In the fault location subpart, the faulty component has to be identified.

Unless the faulty component is found, full recovery cannot be made [4].

(2) System Repair

In the system repair subpart, the system will be repaired by either

replacing the faulty component with a new one or taking the faulty component out

of the system. In order to have a fault tolerant system, the system has to be

online during the process of system repair. If we must power off the system

during the system repair, we cannot call that system fault tolerant. Thus, the

system repair has to be done in an automated manner. The redundancy concept

plays a big role in this subpart [4].

One approach is having a working, errorless spare component in the

system so that the system will have a spare component that has the exact same

settings and properties as the affected component when a faulty component has

to be replaced [4].

 29

Another approach is virtualizing the whole system. This approach is

cheaper than having a spare component in the system all the time. For some

projects, despite the cost, it is preferable to have an abundance of software

components for providing better system up time and more speed in terms of

overall system performance.

After we apply the system repair technique, the system will run normally.

The drawback of system repair may be a certain level of performance

degradation. On the bright side, though, the system will be available to all users

in that time [4].

 30

THIS PAGE INTENTIONALLY LEFT BLANK

 31

III. FAULT TOLERANCE IN ORACLE DATABASES

In this chapter, we discuss a specific technology, the Oracle Data Guard,

for database fault tolerance. Before discussing the specific features and uses of

Oracle Data Guard, we first provide an explanation of the product’s intended

purpose and value.

A. WHY ORACLE DATA GUARD

According to the official definition from the Oracle white paper, “Oracle

Data Guard is the management, monitoring, and automation software

infrastructure that creates, maintains, and monitors one or more standby

databases to protect enterprise data from failures, disasters, errors, and

corruptions” [21].

The same Oracle white paper also states:

Data Guard maintains these standby databases as synchronized
copies of the production database. These standby databases can
be located at remote disaster recovery sites thousands of miles
away from the production data center, or they may be located in the
same city, same campus, or even in the same building. If the
production database becomes unavailable because of a planned or
an unplanned outage, Data Guard can switch any standby
database to [take on] the production role, thus minimizing the
downtime associated with the outage, and preventing any data loss
[22].

In addition to Oracle Data Guard, Oracle has another option, namely

Oracle Active Data Guard, which is a superset of Oracle Data Guard. Oracle

Active Data Guard is an option for the Oracle Database Enterprise Edition. It

provides advanced capabilities, such as Data Guard functionality, including Real-

Time Query, Automatic Block Repair, Far Sync, RMAN Block Change Tracking,

Active Data Guard Rolling Upgrade, Global Database Services, and Application

Continuity [23].

 32

The ultimate goal of using Oracle Data Guard capability is to ensure the

High Availability, Quality of Service, Data Protection, and Disaster Recovery [24].

It can be clearly deduced that Oracle Data Guard is a means of ensuring Fault

Tolerance in the databases. To understand how particular characteristics of

Oracle Data Guard meet the Fault Tolerance Objectives, it is important to recall

the significant requirements described in the previous chapter: dependability,

availability, reliability, safety, and maintainability. Reliability is ensured in Oracle

Data Guard by real-time data protection. According to [19], “Oracle Data Guard

enables zero data loss disaster recovery (DR) across any distance without

impacting database performance. It repairs physical corruption without impacting

availability” and saves network bandwidth without special-purpose network

devices [25].

Availability is ensured in Oracle Data Guard by providing continuous

access to data. According to [25], “It is essential when very little or no downtime

is acceptable to perform maintenance activities. Activities, such as moving a

table to another location in the database or even adding CPUs to hardware,

should be transparent to the user in a high availability architecture” [25]. Oracle

documentation [25] continues that, “Availability is the degree to which an

application, service, or function is accessible on demand. Availability is measured

by the perception of an application’s user. If a user cannot access the system, it

is said to be unavailable. Generally, the term downtime is used to refer to periods

when a system is unavailable” [25]. Oracle documentation [25] also argues that,

“Users who want their systems to be always ready to serve them need high

availability. A system that is highly available is designed to provide uninterrupted

computing services during peak periods, during most hours of the day, and most

days of the week throughout the year; this measurement is often shown as

24x365. Such systems may also need a high availability solution for planned

maintenance operations such as upgrading a system’s hardware or software”

[25].

 33

Dependability and maintainability are ensured in both Oracle Data Guard

and Oracle itself by constant software updates and customer support.

B. ORACLE DATABASE 12C

Oracle Database 12c has a single software application that is capable of

serving multiple customers. This is referred to as multitenant architecture. Multi-

tenant architecture enables managing databases as a cloud service. The main

focus of the Oracle Database 12c is on efficiency, performance, security, and

availability. Oracle Database 12c has two editions, which are the Enterprise

Edition and the Standard Edition 2 [26].

1. An Overview

Oracle Database 12c offers many new concepts to its users. According to

the official Oracle white paper [27], “Oracle Database 12c supports a new

architecture that lets you have many ‘sub databases’ inside a single ‘super

database’ … The ‘super database’ is the multitenant container database—

abbreviated as CDB; and the ‘sub database’ is the pluggable database—

abbreviated as PDB. In other words, the new architecture lets you have many

PDBs inside a single CDB” [27]. The new architecture is referred to as the

multitenant architecture.

2. Database

Referring to Figure 6 provides a consolidated view into the inner workings

of Oracle Database 12c. This screenshot is taken from Fernandez’s book [28].

The software tool that was used to generate the screenshot is Spotlight [28]. This

figure gives an insight into many topics that will be discussed in following

sections, such as System Global Area (SGA), Redo logs, Achieve Logs, and

Database Files [28].

 34

Figure 6. The Spotlight Tool’s Representation of Oracle Database 12c

Source: I. Fernandez, Beginning Oracle Database 12c Administration: From
Novice to Professional, 2nd ed., New York, NY: Apress IOUG, 2015, p. 48.

a. Database vs. Instance

In Oracle terminology, the term of “database” means the physical storage

of data and information, and the term of “instance” means the software that is

running on the server. The instance provides access to the data and information

in the database and the resources that the software uses [29]. Another way to

distinguish the instance from the database is to consider that the instance runs

on the computer or server, and the database resides on hard drives that are

attached to the server or computer [29].

 35

The relationship between an instance and a database is presented in

Figure 7.

Figure 7. An Instance and a Database in the Same Figure

Source: R. Greenwald, R. Stackowiak, and J. Stern, Oracle Essentials: Oracle
Database 12c, 5th ed. Sebastopol, CA: O’Reilly Media, Inc., 2013, p. 40.

The database is a physical structure. It consists of many files stored on

physical disks. On the other hand, the instance is logical. The instance has

processes on the server [29]. An instance is able to reach only one database.

However, there can be more than one instance in the same database [29].

Oracle has two types of memory areas, the System Global Area (SGA)

and Program Global Area (PGA). The System Global Area (SGA) is an area of

shared memory. The Program Global Area (PGA) is an area of private memory

for each process.

 36

b. Data Files and Tablespaces

Data files are collections of files, which are grouped into tablespaces

logically. They have descriptive names, such as DATA, INDEX, UNDO, and

TEMP, in order to indicate the purposes of those files accordingly [28].

All data files have to be stored in tablespaces. A tablespace is a logical

structure. Each tablespace has some physical structures known as data files.

Each tablespace has to have one or more data files. Each data file has to belong

to only one tablespace [29].

c. Control Files

Database control files have the locations of other physical files, which are

data files and redo log files, that form the database. Database control files store

very important information about the database such as [29]:

 The name of the database

 When the database was created

 Names and locations of data files and redo log files

 Tablespace information

 Data file offline ranges

 The log history and current log sequence information

 Archived log information

 Backup set, pieces, data file, and redo log information

 Data file copy information

 Checkpoint information [29]

The database control file, which contains the database startup settings,

has two versions that are a pfile (text version) and an spfile (binary version). A

pfile and an spfile have important information such as the memory that the

system will use during its operation [28].

 37

Listener.ora is another type of configuration file, which controls the

operation of listener, a process in the database session [28].

Figure 8 shows the relationship among control files, data files, and redo

log files.

Figure 8. Data files, Redo Log files, and Control Files

Source: R. Greenwald, R. Stackowiak, and J. Stern, Oracle Essentials: Oracle
Database 12c, 5th ed. Sebastopol, CA: O’Reilly Media, Inc., 2013, p. 43.

d. Redo Log Files

Redo log files hold a log of changes made to databases [29]. Those

changes are results of transactions and internal Oracle activities.

From the fault tolerance perspective, redo log files are vitally important.

When an instance failure occurs, some changes that were made to the database

may not be applied. Redo log files are helpful at those moments; they can be

used to play back the changes and apply them to the database. By doing that,

 38

redo log files protect the database by having a fault tolerance to instance failures

[29].

Moreover, redo log files are used for “undo” operations, which are the

following operations after “Rollback.” “Rollback” is basically going back to the last

commit of the database [29].

C. ORACLE DATA GUARD

Oracle Data Guard, its configurations, advantages, and the inner workings

of this technology are discussed in this section.

1. An Overview

According to the official definition from the Oracle white paper, “Oracle

Data Guard is the management, monitoring, and automation software

infrastructure that creates, maintains, and monitors one or more standby

databases to protect enterprise data from failures, disasters, errors, and

corruptions” [21].

The same Oracle white paper adds that

Data Guard maintains these standby databases as synchronized
copies of the production database. These standby databases can
be located at remote disaster recovery sites thousands of miles
away from the production data center, or they may be located in the
same city, same campus, or even in the same building. If the
production database becomes unavailable because of a planned or
an unplanned outage, Data Guard can switch any standby
database to the production role, thus minimizing the downtime
associated with the outage, and preventing any data loss [22].

2. Oracle Data Guard Configurations

According to [30], “An Oracle Data Guard configuration can contain one

primary database and up to 30 destinations. The members of an Oracle Data

Guard configuration are connected by Oracle Net.” Moreover, Oracle Data Guard

members can be remote from each other; they do not have to be in the same

location [30].

 39

Oracle Net and Oracle Net Services provide the connectivity across a

distributed Oracle Data Guard configuration.

According to Oracle Database Online Documentation [31], “Oracle Net

Services provides enterprise wide connectivity solutions in distributed,

heterogeneous computing environments. Oracle Net Services ease the

complexities of network configuration and management, maximize performance,

and improve network diagnostic capabilities” [31]. The same documentation

defines Oracle Net as “a component of Oracle Net Services, [which] enables a

network session from a client application to an Oracle Database server” [31].

The most important point in terms of the members of an Oracle Data Guard

configuration is they have to communicate each other, wherever they are. Thus,

there is no limitation or no restriction on where they are physically located at [30].

The Oracle Data Guard configuration typically has one primary database,

and up to 30 standby databases [30]. Standby databases can be any of these

three: physical standby databases, which are a “physically identical copy of the

primary database, with on disk database structures that are identical to the

primary database on a block-for-block basis” [30]; logical standby databases,

which have the “same logical information as the production database”; or

snapshot standby databases, which are very much like physical or logical

standby databases [30]. This third type of database “receives and archives redo

data from a primary database” [30].

Figure 9 shows a typical Oracle Data Guard configuration. In the

configuration shown, the primary database transmits redo data, which contains a

recording of changes made to the database, to the standby database [30].

 40

Figure 9. Typical Oracle Data Guard Configuration

Source: Introduction to Oracle Data Guard. (n.d.). Oracle. [Online]. Available:
https://docs.oracle.com/database/121/sbydb/concepts.htm#sbydb4701.
Accessed: Feb.02, 2016.

3. Advantages of Oracle Data Guard

Oracle Data Guard has many advantages. According to [24], these

advantages are: 

 Disaster recovery, data protection, and high availability,

 Complete data protection,

 Efficient use of system resources,

 Flexibility in data protection to balance availability against
performance requirements,

 Automatic gap detection and resolution,

 Centralized and simple management,

 Integration with Oracle Databases, and

 Automatic role transitions.

Out of all these advantages, the most noticeable of all are disaster

recovery, data protection, and high availability. The data protection benefit also

shines out in terms of reliability.

 41

4. How Data Guard Synchronizes Standby Databases

Primary and standby databases in Oracle Data Guard configuration use

Transmission Control Protocol/Internet Protocol (TCP/IP) to communicate using

Oracle Net Services [23].

According to [23], “Data Guard automatically synchronizes the primary

database and all standby databases by transmitting primary database redo logs”

and applying that information to the standby databases [23].

a. Transport Services

Data guard transport services are responsible for transferring redo log files

from the primary database to standby databases. This can be done automatically

by the system itself, or it can be initiated manually by users. The changes that

are made to the primary database are written to a local online log file via redo log

files. Those redo log files are generated as users commit transactions, which are

made at a primary database. Transport services rapidly transfer those redo log

files from the primary database log buffer to standby databases [30]. There are

two main reasons why this process is very efficient:

Firstly, Data Guard makes a direct transfer from memory, where the redo

log files are allocated and sitting within the system global area, to standby

databases. Therefore, this approach prevents disk input/output overhead on a

primary database [30].

Secondly, Data Guard transmits database redo log files only. Compared to

the other available technology for data protection over physically separate

environments, which is storage remote-mirroring, Data Guard offers a much

more light-weight approach. Recent Oracle tests have shown that Oracle Data

Guard transfers up to 7 times less network volume and 27 times fewer network

input/output operations [30]. Data Guard physical standby prevents input/output

overhead by having logical replication instead of physical replication [30].

 42

Remote-mirroring occurs in two ways, synchronous and asynchronous

[30]. Synchronous remote-mirroring is accomplished by staying in communication

with the remote system and waiting for it to finish its writing process. The

recovery point objective of synchronous remote-mirroring is zero data loss, and

the recovery time objective is seconds to minutes. Asynchronous remote-

mirroring, on the other hand, is a store and forward technique [30]. It is mostly

used for cases where there are longer distances between the primary system

and remote systems. On the bright side, both synchronous and asynchronous

remote-mirroring have minimal to zero data loss risk, and they both have a quick

data recovery advantage [32]. However, they are expensive, and they require a

lot of disk space, because the all of the changes that are made to the primary

system must be transmitted as blocks [30], [32].

Data Guard has two transport services: as synchronous and

asynchronous transport services, and synchronous Data Guard transport

services have two options in Oracle Database 12c: Fast Sync and Far Sync [30].

Fast sync enables standby databases to inform the primary database as

soon as they received redo logs. This option improves the overall performance

by decreasing the time for the primary system, waiting for standby system to

finish its commit process [30].

Far sync facilitates zero data loss to standby databases when there is

failover [30]. This is done by making primary database to have the

acknowledgement after successfully commit process in the standby databases.

This option is available in Oracle Active Data Guard [30].

Asynchronous transport services are very much like store and forward

method. In asynchronous transport services, the primary database simply does

not wait for standby databases’ acknowledgements for commit [30].

 43

b. Redo Apply Services

According to [30], “Redo Apply services run on a physical standby

database. Redo Apply reads redo records from a standby redo log file, performs

Oracle validation to ensure that redo is not corrupt” [30]. After that, Redo Apply

services apply redo changes to the standby database. Redo apply functions are

independent from transport services [30].

c. Continuous Oracle Verification

Data Guard validates all redo logs before they are committed to the

standby database. Data Guard also detects corruptions that occur because of

lost-writes. Lost-writes primarily result from miscommunication between the

database system and the hard drive. These corruptions may spread from

standby databases to the primary one, or vice versa. Data Guard prevents further

corruptions by performing lost-write validation at standby databases [30].

5. Managing the Data Guard Configuration

The most convenient way to interact with Oracle Database 12c is using

the SQL*Plus application. The SQL*Plus application is available for various

operating systems, including Windows, MAC OS X, and Linux.

Oracle Data Guard can be managed by Data Guard broker, which

“automates and centralizes the creation, maintenance, and monitoring of a Data

Guard configuration” [23]. Database administrators (DBAs) can use either Data

Guard broker’s command line interface or Oracle Enterprise Manager Cloud

Control for interacting the Data Guard broker [23].

Oracle Enterprise Manager Cloud Control is a key product that the Oracle

company uses primarily to provide a complete and integrated enterprise cloud

management solution for information technology management [33]. DBAs use

Oracle Enterprise Manager Cloud Control product via control console. A

screenshot of the Oracle Enterprise Manager Cloud Control console appears in

Figure 10.

 44

Figure 10. A Picture of Oracle Enterprise Manager Cloud Control
Console

Source: Overview of Oracle Enterprise Manager Cloud Control 12c. (n.d.).
Oracle. [Online]. Available: http://docs.oracle.com/cd/E24628_01/doc.121/
e25353/overview.htm#EMCON110. Accessed: Feb.09, 2016.

Oracle Enterprise Manager Cloud Control has setup assistants to enable

creating Data Guard configurations. These assistants also simplify the process

for DBAs [23]. The Data Guard management page, which is accessible on Oracle

Enterprise Manager Cloud Control, can be seen in Figure 11.

 45

Figure 11. Data Guard Management Page

Source: Oracle Active Data Guard Real-Time Data Protection and Availability.
(2015, Jan). Oracle. [Online]. Available: http://www.oracle.com/technetwork/
database/availability/active-data-guard-wp-12c-1896127.pdf.

a. Switchover and Failover

There are two Data Guard role management services, such as switchover

and failover [23]. The primary difference between a switchover and a failover is

that the former is a planned event, whereas the latter is unplanned. A switchover

is a planned event that is mainly used when there is a planned maintenance or

software/hardware upgrade happening. The primary goal of switchover is to

reduce the downtime, as well as to provide the zero data loss [23].

A failover assigns one of the standby databases as primary. In case of

unplanned shutdown of the primary database, it does not require the standby

database to be restarted before assuming the primary database’s role [23]. There

are two ways to initiate a failover. The first one is manual failover, where the DBA

uses the Oracle Enterprise Manager Cloud Control Graphical User Interface

(GUI), the Data Guard broker’s command line interface, or SQL*Plus. The

 46

second way is using fast-start Failover, where Data Guard provides an automatic

failover [23].

b. Fast-Start Failover

Fast-start Failover enables [23] “Data Guard to automatically recover from

a previously chosen standby database without requiring manual intervention to

start the failover process” [23]. In fast-start Failover role, Data Guard also

“continuously monitors the status of the configuration and initiates a failover if

needed” [23].

c. Automating Client Failover

Although manual failover and fast-start failover are very important

capabilities, they are not enough by themselves. In order to have an efficient high

availability, all running processes and applications should be able to kill their

existing transactional processes to or from the failed primary database, and

direct themselves by quickly reconnecting to the new primary database [23].

According to [23], Data Guard broker can automatically assign a “standby

database to the primary role,” start “required database services appropriately for

the primary role,” and notify “application clients to disconnect from the failed

primary database.” Broker can also direct application clients to the new primary

database, without requiring any further manual actions [23].

6. Tying Data Guard to Fault Tolerance

As discussed in Chapter II, there are four fault tolerance stages, which are

error detection, damage confinement, error recovery, and fault treatment and

continued system service.

Error detection is done by DGMGRL and Observer in the Data Guard

Configuration. DGMGRL monitors the status of the configuration and tells

whether the configuration is successful, DGMGRL gives details if the

configuration is not successful. Observer monitors the fast-start failover

 47

configuration and detects any errors in the primary database to perform an

automatic failover to the standby database. Observer also automatically

reinstates the primary database when it is up again.

Damage confinement is done and mitigated primarily by having redo log

files, transport services, and flashback database in the Data Guard. Switchover

and failover operations also contribute to the damage confinement stage.

Error recovery is provided by restoring or reinstating the failed database to

an earlier state. The earlier state used for reinstatement is stored in the flashback

database. The error recovery strategy in Oracle Data Guard is the backward

recovery.

Fault treatment and continued system service is achieved by the

combined efforts of redo log files, flashback databases, switchover and failover

operations, and transport services. They all contribute to fault treatment and

continued system service stage. However, the error removal from the system or

databases requires manual interventions.

D. ORACLE VM VIRTUALBOX

Oracle VM Virtualbox and its capabilities are discussed in this section.

1. An Overview

“Oracle VM VirtualBox is a cross-platform virtualization application” [34]. It

is installed on the existing operating system. It also boosts the capabilities of the

existing computer “so that it can run multiple operating systems at the same time”

[34]. There is no limitation on the number of virtual machines to run using Oracle

VM VirtualBox, except the disk space and the memory [34].

2. Capabilities and Technical Aspects

Here are the main features of Oracle VM VirtualBox application:

 Portability: According to [34] “VirtualBox runs on a large number of
32-bit and 64-bit host operating systems, such as Windows, Mac,
Linux, and Solaris.” Oracle VM VirtualBox is a “hosted” hypervisor

 48

(type 2). The overview in [34] continues that Oracle VM VirtualBox
“requires an existing operating system to be installed. It can thus
run alongside existing applications on that host” [34]. Oracle VM
VirtualBox is “functionally identical on all of the host platforms, and
the same file and image formats are used. This allows you to run
virtual machines created on one host on another host with a
different host operating system; for example, a virtual machine that
is created on Mac, can also run under Linux” [34].

 Compatibility with the existing hardware capabilities of the host
computer: Users can use Oracle VM VirtualBox with some old
hardware, where new features are not present [34].

 Extended hardware support: Oracle VM VirtualBox supports guest
multiprocessing, USB device support, hardware compatibility with
the existing hardware capabilities of the host computer, full
Advanced Configuration and Power Interface (ACPI) support,
multiscreen resolutions, built-in Internet Small Computer System
Interface (iSCSI) support, and Preboot Execution Environment
(PXE) Network boot [34].

 Remote machine display: The Oracle VM VirtualBox Remote
Desktop Extension (VRDE) offers “high-performance remote
access to any running virtual machine. This extension supports the
Remote Desktop Protocol (RDP) originally built into Microsoft
Windows, with special additions for full client USB support” [34].

Oracle VM VirtualBox runs on the following operating systems [34]:

 Windows hosts:

 Windows Vista SP1 and later (32-bit and 64-bit)

 Windows Server 2008 (64-bit)

 Windows Server 2008 R2 (64-bit)

 Windows 7 (32-bit and 64-bit)

 Windows 8 (32-bit and 64-bit)

 Windows 8.1 (32-bit and 64-bit)

 Windows 10 RTM build 10240 (32-bit and 64-bit)

 Windows Server 2012 (64-bit)

 49

 Windows Server 2012 R2 (64-bit)

 Mac OS X hosts (64-bit):

 10.8 (Mountain Lion)

 10.9 (Mavericks)

 10.10 (Yosemite)

 10.11 (El Capitan)

 Linux hosts (32-bit and 64-bit):

 Ubuntu 10.04 to 15.04

 Debian GNU/Linux 6.0 (“Squeeze”) and 8.0 (“Jessie”)

 Oracle Enterprise Linux 5, Oracle Linux 6 and 7

 Redhat Enterprise Linux 5, 6 and 7

 Fedora Core / Fedora 6 to 22

 Gentoo Linux

 openSUSE 11.4, 12.1, 12.2, 13.

 Mandriva 2011

 Solaris hosts (64-bit only):

 Solaris 11

 Solaris 10 (U10 and higher)

 50

THIS PAGE INTENTIONALLY LEFT BLANK

 51

IV. DESIGNING AND IMPLEMENTING A FAULT TOLERANT
DATABASE SYSTEM

A. DESIGN AND RATIONALE

The system that we designed has:

 Two databases, namely ORA12C and ORA12CX;

 A database administrator, who is using Data Guard command line
interface (DGMGRL);

 An observer, which monitors two databases and performs a fast-
start failover when it is needed.

The general picture of the system is given in Figure 12.

Figure 12. The Design of the System

So

 52

The assumptions for the system that we designed derive from the actual

needs of C2 systems in naval warfare ships. According to the U.S. Department of

Defense Dictionary of Military and Associated Terms, the C2 system provides

“…facilities, equipment, communications, procedures, and personnel essential

for a commander to plan, direct, and control operations of assigned and attached

forces pursuant to the missions assigned” [35].

C2 systems have to meet two minimum requirements, which are

establishing and keeping the secure communication with the remote command

authorities, and providing effective and correct supportive information to the

captain and the officers in charge in the combat information center on a ship in a

timely manner.

The design of the research system is focused on meeting the needs of the

ship’s interior information system that consistently supports the C2 system. That

is the main reason why we chose to store the databases and other elements in

the same operating system.

Our system uses the primary database, which is ORA12C, when

everything is normal and there is no failure in the system. This means, ORA12C

is the primary means of storing the information that supports the C2 system.

When there is no fault (i.e., the primary database is up, running, and accessible

to the other services), data will directly go to the primary database and our

system will update the standby database in real time. Since both the primary and

the standby databases are synchronized with the help of Oracle Data Guard

architecture, the system itself will offer the redundancy by having the same data

in multiple databases and places in the disk.

Having a problem in the standby database will not affect the actual

transaction on the primary database and in the C2 system. The database

managers will be informed of the problem in the standby database, and they can

work on the problem without interfering with the active primary database. Oracle

 53

Data Guard will sense and start storing changes in the primary database in redo

log files until the future time when the standby database will be up and running.

When there is a problem encountered in the primary database, the system

will perform a switch to the standby database. The standby database will take the

responsibility of the primary database from that moment on until the database

administrator fixes the problem in the primary database. After the standby

database alters its role as primary, all changes will be stored on the standby

database.

The database administrator can perform a switchover between two

databases when there is a need. The need for switchover can be:

 Planned maintenance in the primary database;

 Planned maintenance on the primary database’s hardware;

 Renewal of network cables in the primary database;

 Training purposes.

The database administrator can also perform a failover between two

databases. The motives for failover can be:

 An unexpected problem or failure occurs in the primary database;

 An unexpected problem occurs on the primary database’s
hardware;

 A connection is lost or a network failure occurs;

 A need for training requires it.

The Data Guard is also capable of performing a failover when there is no

available database administrator on duty, or to limit the down time of the system

before the failover that is performed by the database administrator. The

observer’s primary job is to monitor the activities of the system and intervene

when needed.

 54

B. IMPLEMENTATION

We divided the implementation process of the system into nine main

steps. Figure 13 shows the flow chart of the system implementation steps.

Figure 13. The Flow Chart of the System Implementation

So

 55

1. Implementation Steps

First, we selected the Fedora operating system as the working

environment because it is a stable and secure version of Linux. Furthermore, the

Fedora operating system is a readily available operating system, which is free

and open-source licensed. We also picked the VirtualBox application because it

is a free hypervisor capable of hosting many operating systems, including

Fedora. After setting up the initial environment, we started the second step of the

implementation, which was installing Oracle Database 12c on Fedora operating

system. The details of installing Oracle Database 12c on Fedora operating

system is explained in the Appendix.

The third step was preparing the primary database and creating the

physical standby database. According to [30], “physical standby database is kept

synchronized with the primary database by using Redo Log files.” We modified

tnsnames and listener files in order to enable the primary database to talk to the

standby database. After creating required directories, the password file, and the

initialization parameter file for the standby database, we started up the standby

instance and then ran the RMAN script for duplicating the primary to the standby.

The fourth step was configuring the Data Guard Broker. Data Guard

Broker is a “framework that automates and centralizes the creation,

maintenance, and monitoring the Data Guard configurations” [36]. This manages

the entire Data Guard configuration including redo transport services, log apply

services, switchovers, and failovers. In this step, we added DGMGRL listeners

for each of the databases by using netmgr. We added ORA12C as the primary

database and ORA12CX as the physical standby database in the DGMGRL

configuration.

The fifth step was changing transport and protection modes. We changed

the transport mode to synchronous using the Broker properties. Data Guard

Transport Services are responsible for transferring redo log files from the primary

to the standby database. We selected synchronous redo transport mode in our

 56

system to make sure that the primary database waits for confirmation from the

standby database when it sends redo log files. We also picked the protection

mode as maximum availability to ensure that the primary database waits until it

receives acknowledgement for applying redo log files from the standby or the

timeout threshold expires. By selecting this mode, we emphasized availability as

the first priority and the second priority as zero data loss protection.

The sixth step was performing a switchover from the primary database to

the standby database. The key advantage of the switchover operation is no

matter which transport service and protection mode are used, it always offers a

zero data loss transition from the primary database to the standby database.

The seventh step was enabling the flashback database. The flashback

database allows the database administrator and Data Guard configuration to

“reinstate a failed primary database as a standby database after a failover

occurred” [36].

The eighth step was performing a manual failover from the primary

database to the standby database. This step was done to show how our system

would react to an unexpected failure in the primary database. The expected

actions for the standby database are taking the responsibility of the primary role

and keeping the system running. This step was done manually from the

DGMGRL console.

The last step was enabling and using fast-start failover. As described by

[36], this allows the Data Guard configuration to automatically perform a failover

to a standby database without needing a manual input or action from the

database administrator. This goal is achieved by using the Observer, which

according to [36] “continuously monitors the status of fast-start failover

configuration.” The Observer also automatically reinstates the failed primary

database after the primary database is up again [36].

 57

The details for installing Oracle Database 12c on the Fedora operating

system and for setting up and managing the Oracle Data Guard configurations

are presented in the Appendix section.

C. TESTING THE PERFORMANCE

Testing configurations and tests performed are presented in this section.

1. Testing Configuration

The configuration for testing the performance of the system is given in

Figure 14.

Figure 14. The Configuration of the System for Testing

So

2. Tests Performed

In order to test the capabilities of the system, numerous tests were

performed and are described in the following subsections.

 58

a. Connectivity

The connectivity test was performed to verify that both databases were up

and running. In this test, we started up the listener, primary database (ORA12C),

standby database (ORA12CX), and the observer before running Java codes. We

also connected the primary database (ORA12C) using the DGMGRL to check

the current configuration of the system.

We followed the following sequence of events during the connectivity

testing scenario:

1. The primary database (ORA12C), the standby database
(ORA12CX), and the observer were started.

2. The configuration of the system was checked by using DGMGRL.

3. The system configuration status was checked to confirm it as
“SUCCESS.”

4. Another terminal was opened prior to running the Java code for the
connectivity testing.

5. TestDBConnection.java code was run to check the connectivity of
the primary database (ORA12C).

6. TestDBConnection2.java code was run to check the connectivity of
the standby database (ORA12CX).

b. User Creation and Granting Roles

The user creation and granting roles test was performed in order to check

what happens when the database administrator creates a user in the primary

database, grants some roles to that user, and creates a table named test, by

connecting to the system as that user. In this test, we started up the listener,

primary database (ORA12C), standby database (ORA12CX), and the observer

before running the test. We also connected the primary database (ORA12C)

using the DGMGRL to check the current configuration of the system.

We followed the following sequence of events during the user creation and

granting roles testing scenario:

 59

1. The primary database (ORA12C), the standby database
(ORA12CX), and the observer were started.

2. The configuration of the system was checked by using DGMGRL.

3. The system configuration status was checked to confirm it as
“SUCCESS.”

4. A new user, named “c##kadir,” was created in the primary
database in the SQL*Plus command line. Required grants were
given to the user “c##kadir” in order to create a table, add to,
update, and delete from the table.

5. A connection to the primary database (ORA12C) was established
with the newly created user “c##kadir.”

6. A new table, named “test,” was created. One column was created
for testing purposes in the “test” table. Five entries were inserted
into the “test” table.

7. After completing the creating the user, granting roles, creating a
table using that user’s credentials, and inserting some values into
that table, a new terminal was opened to connect to the standby
database (ORA12CX).

8. A connection to the primary database (ORA12C) was established
with the recently created user “c##kadir.”

9. The “test” table and all entries were verified in the standby
database (ORA12CX) using the user “c##kadir” credentials.

c. Reading from Databases

The reading from databases test was performed in order to confirm that

the table count numbers in both databases were the same. In this test, we

started up the listener, primary database (ORA12C), standby database

(ORA12CX), and the observer before running the test. We also connected the

primary database (ORA12C) using the DGMGRL to check the current

configuration of the system.

We followed the following sequence of events during the reading from

databases testing scenario:

1. The primary database (ORA12C), the standby database
(ORA12CX), and the observer were started.

 60

2. The configuration of the system was checked by using DGMGRL.

3. The system configuration status was checked to confirm it as
“SUCCESS.”

4. Another terminal was opened prior to running the Java code for the
connectivity testing. The connectivity test was repeated.

5. Many entries were inserted in the “test” table.

6. TableCount.java code was run to check the number of entries of
two databases.

7. The verification of the test was made by checking they both had the
same number of entries. The result that has equal numbers in both
tables and the elapsed times for reading from two databases can
be observed in Figure 15.

Figure 15. The Result of the Reading from Databases Test

So

d. Writing to Databases

The writing to databases test was performed in order to determine

whether both databases synchronize with each other when a client makes

 61

changes in the test table. In this test, we started up the listener, primary database

(ORA12C), standby database (ORA12CX), and the observer before running the

test. We also connected the primary database (ORA12C) using the DGMGRL to

check the current configuration of the system.

We followed the following sequence of events during the writing to

databases testing scenario:

1. The primary database (ORA12C), the standby database
(ORA12CX), and the observer were started.

2. The configuration of the system was checked by using DGMGRL.

3. The system configuration status was checked to confirm it as
“SUCCESS.”

4. Another terminal was opened prior to running the Java code for the
connectivity testing. The connectivity test was repeated.

5. UpdatingTable.java code was run to insert 2000 rows in the test
table. In this step, there were no failures in the databases. The
output of this step can be seen in Figure 16.

6. UpdatingTable.java code was run to insert 2000 rows in the test
table again. In this step, there was an error injected to the standby
database. The error was created by shutting down the standby
database. The output of this step can be seen in Figure 17.

7. UpdatingTable.java code was run one more time to insert 2000
rows in the test table. The standby database was still inaccessible
in this step. This step was done to insert more entries in the table to
cause more transactional complexity. The output of this step can be
seen in Figure 18.

8. The standby database (ORA12CX) was started again. Immediately
after that, TableCount.java code was run to check the number of
entries in both tables. The verification of the test is made by
checking to see that they both have the same number of entries.
The output of this step can be seen in Figure 19.

 62

Figure 16. Inserting 2000 Rows When Both Databases Are Up

So

Figure 17. Inserting 2000 Rows When the Standby Database Is Down

 63

Figure 18. Inserting 2000 More Rows When the Standby
Database Is Down

So

Figure 19. Two Databases Are Synchronized

So

 64

e. Multiple Clients Trying to Access the System

The multiple clients trying to access the system test was performed in

order to check what happens when two clients try to connect to the system and

make changes in the test table. In this test, we started up the listener, primary

database (ORA12C), standby database (ORA12CX), and the observer before

running Java codes. We also connected the primary database (ORA12C) using

the DGMGRL to check the current configuration of the system.

We followed the following sequence of events during the multiple clients

trying to access the system testing scenario:

1. The primary database (ORA12C), the standby database
(ORA12CX), and the observer were started.

2. The configuration of the system was checked by using DGMGRL.

3. The system configuration status was checked to confirm it as
“SUCCESS.”

4. Another terminal was opened prior to running the Java code for the
connectivity testing. The connectivity test was repeated.

5. Before running the test, TableCount.java code was run to check the
number of entries in the test table. The output of this step can be
seen in Figure 20.

6. UpdatingTable.java code was run on two different terminals at the
same time to insert a total of 4000 rows in the test table. In this
step, there were no failures in the databases. The output of this
step can be seen in Figure 21.

7. TableCount.java code was run one more time to verify that two
numbers were matched. The output of this step can be seen in
Figure 22.

8. Steps 5 was repeated one more time. In this step, there was an
error injected into the standby database. The error was created by
shutting down the standby database. UpdatingTable.java code was
run on two different terminals at the same time to insert a total of
4000 rows in the test table when there was an error in the system.
The output of this step can be seen in Figure 23 and Figure 24.

9. The standby database (ORA12CX) was started again. Immediately
after that, TableCount.java code was run to check the number of

 65

entries in both tables. The verification of the test is made by
checking to see that they both have the same number of entries.
The output of this step can be seen in Figure 25.

Figure 20. The Output Before Running Step 6

Figure 21. Inserting 4000 Rows from Two Different Terminals

So

 66

Figure 22. Two Databases Are Synchronized

So

Figure 23. The Output Before Running Step 8

So

 67

Figure 24. Inserting 4000 Rows from Two Different Terminals When the
Standby Database Is Down

So

Figure 25. Two Databases Are Synchronized

So

 68

f. Writing to Databases as Multiple Clients Are Trying to Access
the System with Multiple Switchovers and Failovers

The writing to databases and multiple clients trying to access the system

with multiple switchovers and failovers test was performed in order to check what

happens when two clients try to connect to the system and make changes in the

test table when there is more than one switchover and/or failover in the system.

In this test, we started up the listener, primary database (ORA12C), standby

database (ORA12CX), and the observer before running Java codes. We also

connected the primary database (ORA12C) using the DGMGRL to check the

current configuration of the system.

We followed the following sequence of steps during the writing to

databases and multiple clients trying to access the system with multiple

switchovers and failovers testing scenario:

1. The primary database (ORA12C), the standby database
(ORA12CX), and the observer were started.

2. The configuration of the system was checked by using DGMGRL.

3. The system configuration status was checked to confirm it as
“SUCCESS.”

4. Another terminal was opened prior to running the Java code for the
connectivity testing. The connectivity test was repeated.

5. Before running the test, TableCount.java code was run to check the
number of entries in the test table. The output of this step can be
seen in Figure 26.

6. UpdatingTable_Switchover_v3.java code was started running. The
number of entries that were to be inserted into the test table was
10000.

7. While UpdatingTable_Switchover_v3.java code was running, we
manually initiated a switchover to the standby database (switchover
#1). In this step, ORA12CX became the primary database. The
output of this step can be seen in Figure 27.

8. After the switchover was successfully performed,
UpdatingTable_Switchover_v3.java code started running again. We
again manually initiated a switchover to the standby database

 69

(switchover #2). In this step, ORA12C became the primary
database. The output of this step can be seen in Figure 28.

9. We repeated the step 7 (switchover #3). The output of this step can
be seen in Figure 29.

10. We repeated the step 8 (switchover #4). The output of this step can
be seen in Figure 30.

11. UpdatingTable_Switchover_v3.java code finished running. The
verification of the test is made by checking the number of entries in
the system before and after running
UpdatingTable_Switchover_v3.java code. We saw the number of
entries was 10000 more in comparison to the previous number,
which we had in Step 5. The output of this step can be seen in
Figure 31.

12. The same steps 5 through 11 were run one more time with
UpdatingTable_Switchover_v4.java code. In this version of the
code, there were no printout statements. The verification of the test
is made by checking the number of entries in the system before
and after running UpdatingTable_Switchover_v4.java code. We
saw the number of entries was 10000 more in comparison to the
previous number before running the code. The output of this step
can be seen in Figure 32.

13. After finishing the having multiple switchovers while inserting into
the test table, we run the same test with two
UpdatingTable_Switchover_v3.java codes running at the same time
as multiple threads. Before running the test, TableCount.java code
was run to check the number of entries in the test table. The output
of this step can be seen in Figure 33.

14. Two UpdatingTable_Switchover_v3.java codes were started
running at the same time. The number of entries to be inserted into
the test table was 20000 in total.

15. While UpdatingTable_Switchover_v3.java codes were running, we
manually initiated a switchover to the standby database (switchover
#1). In this step, ORA12CX became the primary database. The
output of this step can be seen in Figure 34.

16. After the switchover was successfully performed,
UpdatingTable_Switchover_v3.java codes started running again.
We again manually initiated a switchover to the standby database
(switchover #2). In this step, ORA12C became the primary
database. The output of this step can be seen in Figure 35.

 70

17. We repeated the step 14 (switchover #3). The output of this step
can be seen in Figure 36.

18. We repeated the step 15 (switchover #4). The output of this step
can be seen in Figure 37.

19. UpdatingTable_Switchover_v3.java codes finished running. The
verification of the test is made by checking the number of entries in
the system before and after running
UpdatingTable_Switchover_v3.java codes. We saw the number of
entries was 20000 more compared to the previous number, which
we had in Step 12. The output of this step can be seen in Figure
38.

20. The same steps 13 through 19 were run one more time with
UpdatingTable_Switchover_v4.java code. In this version of the
code, there were no printout statements. The verification of the test
is made by checking the number of entries in the system before
and after running UpdatingTable_Switchover_v4.java code. We
saw the number of entries were 20000 more compared to the
previous number before running the code. The output of this step
can be seen in Figure 39.

21. After finishing the having multiple switchovers while inserting into
the test table with multiple threads, we ran another test to evaluate
the behavior of the system when there is a failover. Before running
the test, TableCount.java code was run to check the number of
entries in the test table. The output of this step can be seen in
Figure 40.

22. Two UpdatingTable_Switchover_v3.java codes were started
running at the same time. The number of entries to be inserted into
the test table was 20000 in total. As they were running, we injected
an error in the system by manually shutting down the primary
database (ORA12C). The observer sensed the error in 30 seconds
and initiated a failover to the standby database (ORA12CX). After
the failover, the two threads started running once again. After
waiting a couple of seconds, we manually started up the ORA12C
instance. The observer started reinstating ORA12C as the two
threads were running.

23. UpdatingTable_Switchover_v3.java codes finished running. The
verification of the test is made by checking the number of entries in
the system before and after running
UpdatingTable_Switchover_v3.java codes. We saw the number of
entries was 20001 more compared to the previous number, which
we had in Step 19. The output of this step can be seen in Figure 41.

 71

24. Lastly, we ran the same test with UpdatingTable_Switchover_v4.java
code, which had no printout statements. The verification of the test is
made by checking the number of entries in the system before and
after running UpdatingTable_Switchover_v4.java codes. We saw the
number of entries was 20001 more compared to the previous
number before running the code. The output of this step can be seen
in Figure 42.

Figure 26. The Number of Entries in the Test Table Before Running the
Four Switchovers in a Single Thread Test

So

 72

Figure 27. Switchover #1 (Single Thread Scenario)

So

Figure 28. Switchover #2 (Single Thread Scenario)

So

 73

Figure 29. Switchover #3 (Single Thread Scenario)

So

Figure 30. Switchover #4 (Single Thread Scenario)

So

 74

Figure 31. The End of Four Switchovers in a Single Thread Test

So

Figure 32. The End of Four Switchovers in a Single Thread Test (No
Printout Statements)

So

 75

Figure 33. The Number of Entries in the Test Table Before Running the
Four Switchovers in Multiple Threads Test

So

Figure 34. Switchover #1 (Multiple Threads Scenario)

So

 76

Figure 35. Switchover #2 (Multiple Threads Scenario)

So

Figure 36. Switchover #3 (Multiple Threads Scenario)

So

 77

Figure 37. Switchover #4 (Multiple Threads Scenario)

So

Figure 38. The End of Four Switchovers in Multiple Threads Test

So

 78

Figure 39. The End of Four Switchovers in Multiple Threads Test (No
Printout Statements)

So

Figure 40. The Number of Entries in the Test Table Before Running a
Failover in Multiple Threads Test

So

 79

Figure 41. The End of a Failover in Multiple Threads Test

So

Figure 42. The End of a Failover in Multiple Threads Test (No Printout
Statements)

So

 80

D. REVIEWING TEST RESULTS

There were six different tests performed in order to assess the

functionality of the system. Those were connectivity, user creation and granting

roles, reading from databases, writing to databases, multiple clients trying to

access the system, and writing to databases as multiple clients are trying to

access the system with multiple switchovers and failovers.

In the connectivity test, the expected outcome was that the system is up,

running, and accessible. The expected result was met in this test.

In the user creation and granting roles test, the expected outcome was to

see that when a user was created and granted some roles in one database, the

same user was created in the other database. For this test, we created a user

“c##kadir” in the primary database with permissions for creating a table, adding

to it, updating, and deleting from the table. We also created a “test” table for that

user. We observed that the same user was created in the other database with

the “test” table. The expected result was met in this test.

In the reading from databases test, the expected outcome was to see the

same number of entries in both databases’ “test” tables. This test was performed

when two databases were up, running, and accessible. We observed that after

inserting some entries into the primary database’s “test” table, the two databases

synchronized with each other and the total number of entries in both “test” tables

stayed the same. It took 0.052 seconds to read the number of entries in the “test”

table from the primary database (ORA12C) and 0.006 seconds from the standby

database (ORA12CX), respectively. The expected result was met in this test.

In the writing to databases test, the expected outcome was to see the

same number of entries in both databases’ “test” tables after inserting some

entries in the primary database when the standby database was shut down. First,

we inserted 2000 entries into the primary database’s “test” table when the

standby database was up. It took 9.9 seconds to insert 2000 entries. After

inserting 2000 entries in the primary database’s “test” table, we observed that

 81

both databases had the same number of entries, which also meant that they

were synchronized as expected. Second, we inserted 4000 entries into the

primary database’s “test” table when the standby database was shut down. It

took 12 seconds to insert 4000 entries in the primary database’s “test” table.

After inserting 4000 entries in the primary database’s “test” table, we started up

the standby database. It took 11.5 seconds for the standby database to start up

and get ready. After that, we observed that both databases had the same

number of entries, which also meant that they were synchronized as expected.

The expected result was met in this test.

In the multiple clients trying to access the system test, the expected

outcome was to see the system responded to all clients that were trying to

connect to databases and updating the “test” table. The expected outcome was

also to see the same number of entries in both databases. In this test, we ran two

Java codes that inserted 2000 entries each in the “test” table simultaneously from

two terminals. We also performed the same test with a failure in the standby

database. After inserting the total of 4000 entries in the primary database’s “test”

table, we observed that both databases had the same number of entries, which

also meant that they were synchronized as expected. It took 8 seconds to insert

4000 entries in the primary database’s “test” table. It took 11.5 seconds for the

standby database to start up and get ready. The expected result was met in this

test.

In the writing to databases as multiple clients are trying to access the

system with multiple switchovers and failovers test, the expected outcome was to

see the system responded to all clients that were trying to connect to databases

and updating the “test” table. The expected outcome was also to see the same

number of entries in both databases. In this test, we first ran one java code that

inserted 10000 entries in the “test” table as there were four switchovers that

happened in the system. It took 420 seconds to insert 10000 entries in the

system as the four switchovers occurred. The same test was also run one more

 82

time with no printout statements. This time, it took 358 seconds to insert 10000

entries in the system as four switchovers occurred.

Next, we ran two Java codes that inserted 20000 entries in the “test” table

simultaneously from two terminals as there were four switchovers occurring in

the system. It took 584 seconds to insert 20000 entries in the system as four

switchovers occurred. The same test was also run one more time with no printout

statements. This time, it took 470 seconds to insert 20000 entries in the system

as four switchovers occurred.

Lastly, we ran two Java codes that inserted 20000 entries in the “test”

table simultaneously from two terminals as one failover happened in the system.

The observer was able to sense the error approximately 30 seconds after we

manually shut down the primary database (ORA12C). It took 122 seconds to

insert 20000 entries in the system as one failover occurred. The same test was

also run one more time with no printout statements. This time, it took 119

seconds to insert 20000 entries in the system as one failover occurred. In the

failover scenario, we observed that there was one more entry in the databases.

This was a normal system behavior in maximum availability mode according to

data protection definitions as described in Data Guard Protection Modes [30].

In all three scenarios in which multiple clients are trying to access the

system with multiple switchovers and failovers, the expected number of entries

was observed after the performed tests. The expected results were met in those

tests.

We have made another observation regarding the switchover and failover

durations. It took 45 seconds to perform a switchover and 75 seconds to perform

a failover. This observation also agrees with Client Failover Best Practices for

Highly Available Oracle Databases [37].

 83

V. CONCLUSIONS AND FUTURE WORK

A. SUMMARY

The purpose of this thesis is to find an alternative way for ensuring the

fault tolerance in C2 systems of naval platforms. It is highly critical for C2

systems of naval platforms to be robust to failures.

This thesis primarily focused on the databases of C2 systems, which

provide all required data to operators, officers, and the captains in order to help

them make decisions using their technical knowledge combined with detailed

scientific information. The data that are stored in these databases can vary in a

high spectrum. The data can simply be the velocity and the direction of the wind,

which can be expressed by integers or floats, or be sophisticated information of

the weapons on board.

In this thesis, we showed that there is a potentially cheaper way to provide

a fault tolerant mechanism for C2 database systems. We designed and

implemented a system using Oracle Database 12c Enterprise Edition and its

features. Specifically, we used two databases in the system, ORA12C and

ORA12CX. Then we connected those two databases with the Data Guard

capability.

Six different tests were performed to check the capabilities and

performance of the system. We observed that all expected results were met and

the system behaved in accordance with the fault tolerance objectives.

Our experiments showed that there is a way to have a robust, fast, and

fault tolerant system for storing databases of C2 systems by using a virtual

environment rather than a physical redundancy. Our alternative approach also

can decrease the cost of having multiple of redundant servers that store

databases. This approach can be used in many fields such as small businesses

and large enterprises that require a fault tolerant solution for physical, human-

 84

made, design, and interaction faults. The military domain can also take

advantage of the approach presented in this work.

B. FUTURE WORK

This thesis makes the initial effort to ensure fault tolerance by working in a

virtual environment. The system that we designed here can be tested with the

data flow in a real C2 system of a naval platform as a future work idea.

The framework in this thesis is stored in the same virtual machine by using

the local machine’s connections to simulate the C2 system database that is

physically located on the ship. The next step can be installing and modifying a

fault tolerant system in distant locations, thus enabling a redundant off-site

database system that can function as a means of backup as well as a fault-

tolerant node.

 85

APPENDIX

A. INSTALLING ORACLE DATABASE 12C ON FEDORA OPERATING
SYSTEM

In this appendix, we describe how we installed Oracle Database 12c on

the Fedora operating system, which runs on the Virtual Box application. We

primarily used the http://dbaora.com/install-oracle-12c-release-1-12-1-on-fedora-

22/ website, which is included in the references section.

First, we downloaded the Oracle Database 12c software from the official

Oracle website (http://www.oracle.com/technetwork/database/enterprise-edition/

downloads/index.html). Before installing the software on the operating system,

we made sure that the operating system was updated to the latest version

properly by entering “dnf update” command in the command line.

The groups and users that were used for installing the database are given

here:

“#groups for database management
groupadd -g 54321 oinstall
groupadd -g 54322 dba
groupadd -g 54323 oper
groupadd -g 54324 backupdba
groupadd -g 54325 dgdba
groupadd -g 54326 kmdba
groupadd -g 54327 asmdba
groupadd -g 54328 asmoper
groupadd -g 54329 asmadmin
#users for database management
useradd -u 54321 -g oinstall -G dba,oper,backupdba,dgdba,kmdba oracle”

After choosing the password for our database, we checked to see which

packets were missing for the installation of the database by typing in the

command line as follows:

“rpm -q --qf ‘%{NAME}-%{VERSION}-%{RELEASE}(%{ARCH})\n’ binutils

\compat-libstdc++-33 \gcc \gcc-c++ \glibc \glibc-common \glibc-devel \glibc-

headers \ksh \libaio \libaio-devel \libgcc \libstdc++ \libstdc++-devel \libXext

 86

\libXtst \libX11 \libXau \libXi \make \sysstat \unixODBC \unixODBC-devel \zlib-

devel”

After figuring out the missing packets, we downloaded and installed them

on the operating system. We added and applied the kernel parameters, which

are recommended by Oracle, to the operating system. All of these given

parameters were written into “/etc/sysctl.conf” file as follows:

“--kernel parameters for 12gR1 installation
fs.file-max = 6815744
kernel.sem = 250 32000 100 128
kernel.shmmni = 4096
kernel.shmall = 1073741824
kernel.shmmax = 4398046511104
net.core.rmem_default = 262144
net.core.rmem_max = 4194304
net.core.wmem_default = 262144
net.core.wmem_max = 1048576
fs.aio-max-nr = 1048576
net.ipv4.ip_local_port_range = 9000 65500
/sbin/sysctl –p”

The recommended shell limits for the Oracle user were written into “/etc/

security/limit.conf” file as follows:

“--shell limits for users oracle 12gR1
oracle soft nofile 1024
oracle hard nofile 65536
oracle soft nproc 2047
oracle hard nproc 16384
oracle soft stack 10240
oracle hard stack 32768”

In order to make the installation more user-friendly and more hassle-free,

we disabled the SELINUX, which is “a reference implementation of the Flask

security architecture for flexible mandatory access control. It was created to

demonstrate the value of flexible mandatory access controls and how such

controls could be added to an operating system” [38].

 87

For the sake of ease of use, we created the bash profile for the “oracle”

user to effectively use the shortcuts. The bash profile settings are provided here:

“# Oracle Settings
export TMP=/tmp
export ORACLE_HOSTNAME=fedora.dbaora.com
export ORACLE_UNQNAME=ORA12C
export ORACLE_BASE=/ora01/app/oracle
export ORACLE_HOME=$ORACLE_BASE/product/12.1.0/db_1
export ORACLE_SID=ORA12C
PATH=/usr/sbin:$PATH:$ORACLE_HOME/bin
export LD_LIBRARY_PATH=$ORACLE_HOME/lib:/lib:/usr/lib;
export CLASSPATH=$ORACLE_HOME/jlib:$ORACLE_HOME/rdbms/jlib;
alias cdob=‘cd $ORACLE_BASE’
alias cdoh=‘cd $ORACLE_HOME’
alias tns=‘cd $ORACLE_HOME/network/admin’
alias envo=‘env | grep ORACLE’
umask 022
envo”

Following are the installation commands:

“##this will increase the permissions
su
##unzipping the software
unzip linuxamd64_12102_database_1of2.zip
unzip linuxamd64_12102_database_2of2.zip
[oracle@fedora ~]$ alias envo cdob cdoh tns
alias envo=‘env | grep ORACLE’
alias cdob=‘cd $ORACLE_BASE’
alias cdoh=‘cd $ORACLE_HOME’
alias tns=‘cd $ORACLE_HOME/network/admin’

##runs alias command envo to display environment settings

[oracle@fedora ~]$ envo
ORACLE_UNQNAME=ORA12C
ORACLE_SID=ORA12C
ORACLE_BASE=/ora01/app/oracle
ORACLE_HOSTNAME=fedora.dbaora.com
ORACLE_HOME=/ora01/app/oracle/product/12.1.0/db_1

 88

##runs alias command cdob and cdoh to check ORACLE_BASE,

ORACLE_HOME

[oracle@fedora ~]$ cdob

[oracle@fedora oracle]$ pwd

/ora01/app/oracle

[oracle@fedora db_1]$ cdoh

[oracle@fedora db_1]$ pwd

/ora01/app/oracle/product/12.1.0/db_1

##finally runs the installation

./runInstaller”

After this step, an installation window of the Oracle Database 12c was

displayed on the screen. There are total of 21 steps in the installation wizard.

During the installation progress, we selected “Server class” and “Single instance

database installation” with the “Enterprise Edition” of Oracle Databases. We also

gave “ORA12C” as my database Oracle System Identifier (SID). We specified the

“Unicode” as the character set for the installation for enabling storage of multiple

language groups. The database was installed in the directory “/ora01/app/oracle/

product/12.1.0/db_1/.” The Oracle Enterprise Manager Database Express 12c

can access the database that we installed by typing

“https://fedora.dbaora.com:5500/em” on the web browser.

These steps were done for one database installation on the Fedora

operating system.

 89

B. SETTING UP AND MANAGING ORACLE DATA GUARD USING DATA
GUARD COMMAND LINE INTERFACE

In this appendix, we describe how we set up and managed the Oracle

Data Guard configurations using DGMGRL (Data Guard Command Line

Interface). We used as a very well designed “hands on” lab, Data Guard Hands

On Lab by Carpenter, which is included in the references section, in order to

build up our system.

As described by [36], the setup and managing process can be expressed

in nine main steps, which are preparing the primary database, creating the

physical database, configuring data guard broker, changing transport mode using

broker properties, changing protection mode to maximum availability, performing

switchover from the primary database to the standby database, enabling the

flashback database, performing manual failover from the primary database to the

standby database, and enabling and using fast-start failover [36].

In the remainder of this appendix, we present how we set up our system

and how we managed the Data Guard capability. Screenshots from the system

are provided to illustrate each step.

 90

1. Preparing the Primary Database

Figures 43 through 46 are given for preparing the primary database step.

Figure 43. Enabling Archiving and Force Logging

Source: “O

 91

Figure 44. Adding 50MB Standby Redo Log Files

Source: “O

Figure 45. Tnsnames.ora File

Source: “O

 92

Figure 46. Listener.ora File

Source: “O

 93

2. Creating the Physical Standby Database

Figures 47 and Figure 48 are given for preparing the primary database

step.

Figure 47. Creating Required Directories for the Standby Database

Source: “O

Figure 48. RMAN Script that Duplicates the Primary to the Standby

Source: “O

 94

3. Configuring Data Guard Broker

Figures 49 through 59 are given for configuring data guard broker step.

Figure 49. Showing the Primary Database Broker Parameters

Source: “O

Figure 50. Showing the Standby Database Broker Parameters

Source: “O

 95

Figure 51. Creating the Broker Configurations-I

Source: “O

Figure 52. Creating the Broker Configurations-II

Source: “O

 96

Figure 53. Creating the Broker Configurations-III

Source: “O

Figure 54. Showing the Primary Database Properties-I

Source: “O

 97

Figure 55. Showing the Primary Database Properties-II

Source: “O

Figure 56. Showing the Standby Database Properties-I

Source: “O

 98

Figure 57. Showing the Standby Database Properties-II

Source: “O

Figure 58. The Configuration of Data Guard, with MaxPerformance

Source: “O

 99

Figure 59. The Configuration of Data Guard, with MaxAvailability

Source: “O

4. Changing Transport Mode Using Broker Properties

Figures 60 through 65 are given for changing transport mode using broker

properties step.

Figure 60. Showing the Initial Transport Method

Source: “O

 100

Figure 61. Modifying the Transport Mode to Synchronous

Source: “O

Figure 62. Verifying the Transport Method

Source: “O

 101

Figure 63. Creating a Redo Gap Between Primary and Standby

Source: “O

Figure 64. Restarting the Standby Database

Source: “O

 102

Figure 65. Verifying Primary and the Standby Databases Automatic
Synchronization

Source: “O

5. Changing Protection Mode to Maximum Availability

Figures 66 and Figure 67 are given for changing protection mode to

maximum availability step.

Figure 66. Showing the Protection Mode Configuration-I

Source: “O

 103

Figure 67. Showing the Protection Mode Configuration-II

Source: “O

6. Performing Switchover from the Primary Database to the
Standby Database

Figure 68 is given for performing switchover from the primary database to

the standby database step.

Figure 68. Switchover from the Primary Database to the Standby
Database

Source: “O

 104

7. Enabling Flashback Database

Figures 69 through 72 are given for enabling flashback database step.

Figure 69. Showing Parameters for Flashback Database

Source: “O

 105

Figure 70. Enabling Flashback Database on Both Databases-I

Source: “O

Figure 71. Enabling Flashback Database on Both Databases-II

Source: “O

 106

Figure 72. Enabling Flashback Database on Both Databases-III

Source: “O

8. Performing Manual Failover from the Primary Database to the
Standby Database

Figures 73 through 79 are given for performing manual failover from the

primary database to the standby database step.

 107

Figure 73. Shutting Down the Primary and Showing Configurations

Source: “O

Figure 74. Successful Manual Failover

Source: “O

 108

Figure 75. Verifying that the Standby Database Became the Primary

Source: “O

Figure 76. Starting Up the Standby Database (Previously the Primary)

Source: “O

 109

Figure 77. The Broker Initiates Reinstatement of Database that Shut
Down Unexpectedly

Source: “O

Figure 78. Success after Reinstating the Database that Shut Down
Unexpectedly

Source: “O

 110

Figure 79. Success in Configuration after Switchover to the Database
that Shut Down Unexpectedly

Source: “O

9. Enabling and Using Fast-Start Failover

Figures 80 through 89 are given for enabling and using fast-start failover

step.

 111

Figure 80. Changing the Fast-Start Failover Threshold

Source: “O

Figure 81. Enabling Fast-Start Failover

Source: “O

 112

Figure 82. Starting the Observer

Source: “O

Figure 83. Verifying the Observer Is Started

Source: “O

 113

Figure 84. Shutting Down the Primary Database for Fast-Start Failover

Source: “O

Figure 85. Examining the Actions in the Observer during the Fast-Start
Failover

Source: “O

 114

Figure 86. The Configuration after Fast-Start Failover

Source: “O

Figure 87. Restarting the Previous Primary Database

Source: “O

 115

Figure 88. Examining the Actions in the Observer after Restarting the
Previous Primary Database

Source: “O

Figure 89. Success after Fast-Start Failovers

Source: “O

 116

THIS PAGE INTENTIONALLY LEFT BLANK

 117

LIST OF REFERENCES

[1] J. C. Laprie, “Dependable computing and fault tolerance: Concepts and
terminology,” in Proceedings of FTCS-25, Pasadena, CA, 1995, vol. 3, pp.
2–11.

[2] IEEE Standard Glossary of Software Engineering Terminology, ANSI/
IEEE Std. 610.12, 1990.

[3] P. K. Pradhan, Fault-Tolerant Computer System Design, 1st ed. Upper
Saddle River, NJ: Prentice-Hall, 1996.

[4] P. Jalote, Fault Tolerance in Distributed Systems, 2nd ed. Englewood
Cliffs, NJ: PTR Prentice Hall, 1998.

[5] E. Kati, “Fault-tolerant approach for deploying server agent-based active
network management (SAAM) server in Windows NT environment to
provide uninterrupted services to routers in case of server failure(s),” M.S.
thesis, Dept. Computer Science, Naval Postgraduate School, Monterey,
CA, 2000.

[6] I. Koren and C. M. Krishna, Fault-Tolerant Systems, San Francisco, CA:
Morgan Kaufmann, 2007.

[7] D. Duggan, “Type-based hot swapping of running modules (extended
abstract),” in Proceedings of the Sixth ACM SIGPLAN International
Conference on Functional Programming—ICFP ‘01, Florence, Italy, 2001,
pp. 62–73.

[8] Feng, N., et al. “Dynamic evolution of network management software by
software hot-swapping,” presented at IEEE/IFIP International Symposium
on Integrated Network Management Proceedings, Seattle, WA, 2001, pp.
63–76.

[9] Q. Wang, J. Shen, X. Wang, and H. Mei, “A component-based approach
to online software evolution,” Journal of Software Maintenance and
Evolution: Research and Practice, vol. 18, no. 3, pp. 181–205, May and
Jun. 2006.

[10] D. A. Patterson, G. Gibson, and R. H. Katz, “A case for redundant arrays
of inexpensive disks (RAID),” in ACM SIGMOD Record SIGMOD Rec.,
vol. 17, no. 3, pp. 109–116, 1988.

 118

[11] P. M. Chen, E. K. Lee, G. A. Gibson, R. H. Katz, and D. A. Patterson,
“RAID: High-performance, reliable secondary storage,” in Proceedings of
CSUR ACM Comput. Surv. ACM Computing Surveys, vol. 26, no. 2, 1994,
pp. 145–185.

[12] Welcome to Apache™ Hadoop®!. (n.d.) Apache, Hadoop. [Online].
Available: http://hadoop.apache.org/. Accessed Feb. 10, 2016.

[13] S. Achari, Hadoop Essentials: Delve into the Key Concepts of Hadoop and
Get a Thorough Understanding of the Hadoop Ecosystem, 1st ed.
Birmingham, England: Packt Publishing, 2015.

[14] J. Dean and S. Ghemawat, “MapReduce: Simplified data processing on
large clusters,” in Proceedings of USENIX Association OSDI ‘04: 6th
Symposium on Operating Systems Design and Implementation, Berkeley,
CA, vol. 6, 2004, pp. 137–149.

[15] S. Shankland. (2008, May 30). Google spotlights data center inner
workings [Online]. Available: http://www.cnet.com/news/google-spotlights-
data-center-inner-workings/#!

[16] A. Avizienis, J.-C. Laprie, B. Randell, and C. Landwehr, “Basic concepts
and taxonomy of dependable and secure computing,” IEEE Trans.
Dependable and Secure Computing, vol. 1, no. 1, pp. 11–33, 2004.

[17] D. J. Sorin. (2009) Fault Tolerant Computer Architecture [eBook version].
[Online]. Available: http://www.morganclaypool.com/doi/pdf/10.2200/
S00192ED1V01Y200904CAC005

[18] T. Anderson and P. A. Lee, Fault Tolerance: Principles and Practice, 1st
ed. Englewood Cliffs, NJ: Prentice-Hall, Inc., 1981.

[19] R. Guerraoui and A. Schiper, “Fault-tolerance by replication in distributed
systems,” in Proceedings Reliable Software Technologies – Ada Europe
‘96, Montreux, Switzerland, 1996, pp. 38–57.

[20] D. Taylor, D. Morgan, and J. Black, “Redundancy in Data Structures:
Improving Software Fault Tolerance,” in Proceedings IEEE Transactions
on Software Engineering, 1980, vol. SE-6, no. 6, pp. 585–594.

[21] Setting up Oracle 11g Data Guard for SAP customers. (n.d.) Oracle.
[Online]. Available: http://www.oracle.com/us/solutions/sap/wp-ora4sap-
dataguard11g-303811.pdf. Accessed Jan. 20, 2016.

 119

[22] S. Chan. (2008, Oct. 10). Comparing oracle data guard vs. active data
guard for ebs environments (oracle e-business suite technology) [Online].
Available: https://blogs.oracle.com/stevenchan/entry/
comparing_oracle_data_guard_vs_active_data_guard_f

[23] Oracle Active Data Guard Real-Time data protection and availability,
Oracle White Paper. (2015, Jan.). Oracle. [Online]. Available:
http://www.oracle.com/technetwork/database/availability/active-data-
guard-wp-12c-1896127.pdf.

[24] Introduction to Oracle Data Guard. (n.d.) Oracle. [Online]. Available:
https://docs.oracle.com/database/121/sbydb/concepts.htm#sbydb00010.
Accessed Jan. 20, 2016.

[25] Overview of high availability. (n.d.) Oracle. [Online]. Available:
https://docs.oracle.com/database/121/haovw/overview.htm#haovw001.
Accessed Jan. 14, 2016.

[26] Oracle database. (n.d.). Oracle. [Online]. Available:
https://www.oracle.com/database/index.html Accessed Jan. 24, 2016.

[27] B. Llewellyn. (2013, Jun.). Oracle multitenant. [Online]. Available:
http://www.oracle.com/technetwork/database/multitenant-wp-12c-
1949736.pdf

[28] I. Fernandez, Beginning Oracle Database 12c Administration: From
Novice to Professional, 2nd ed. New York, NY: Apress IOUG, 2015.

[29] R. Greenwald, R. Stackowiak, and J. Stern, Oracle Essentials: Oracle
Database 12c, 5th ed. Sebastopol, CA: O’Reilly Media, Inc., 2013.

[30] Introduction to Oracle Data Guard. (n.d.). Oracle. [Online]. Available:
https://docs.oracle.com/database/121/SBYDB/concepts.htm#SBYDB4701.
Accessed Feb. 02, 2016.

[31] Introduction to Oracle Net Services. (n.d.). Oracle. [Online]. Available:
https://docs.oracle.com/cd/b28359_01/network.111/b28316/intro.htm.
Accessed Feb. 02, 2016.

[32] M. Staimer. (2005, Mar.) Pros and cons of remote mirroring for DR.
[Online]. Available: http://searchstorage.techtarget.com/tip/Pros-and-cons-
of-remote-mirroring-for-DR. Accessed Feb. 04, 2016.

[33] Overview of Oracle Enterprise Manager Cloud Control 12c. (n.d.). Oracle.
[Online]. Available: http://docs.oracle.com/cd/E24628_01/doc.121/e25353/
overview.htm#EMCON110. Accessed Feb. 09, 2016.

 120

[34] Oracle VM VirtualBox User Manual. (2016, Jan. 19). VirtualBox. [Online].
Available: http://download.virtualbox.org/virtualbox/usermanual.pdf.

[35] Department of Defense Dictionary of Military and Associated Terms, U.S.
Department of Defense, 2016, p. 40.

[36] L. M. Carpenter. (2013, Jan.) Data Guard Hands On Lab. [Online].
Available: http://www.oracle.com/technetwork/database/features/
availability/dg-hands-on-lab-427721.pdf

[37] Client failover best practices for highly available Oracle databases. (2015,
August). Oracle. [Online]. Available: http://www.oracle.com/technetwork/
database/availability/client-failover-2280805.pdf

[38] SELinux frequently asked questions (FAQ). (n.d.). NSA. [Online].
Available: https://www.nsa.gov/research/selinux/faqs.shtml. Accessed
Mar. 31, 2016.

 121

INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center
 Ft. Belvoir, Virginia

2. Dudley Knox Library
 Naval Postgraduate School
 Monterey, California

